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INCOMPRESSIBLE FLUID FLOW       12 

Viscous flow - Navier-Stoke's equation (Statement only) - Shear stress, pressure gradient relationship - 

laminar flow between parallel plates - Laminar flow through circular tubes  (Hagen poiseulle's) - Hydraulic 

and energy gradient - flow through pipes - Darcy -weisback's equation - pipe roughness -friction factor- 

Moody's diagram-minor losses - flow through pipes in series and in parallel - power transmission  - 

Boundary layer flows, boundary layer thickness, boundary layer separation - drag and lift coefficients. 

 

Real fluids 

 

The flow of real fluids exhibits viscous effect, that is, they tend to “stick” to solid 

surfaces and have stresses within their body. 

You might remember from earlier in the course Newton‟s law of viscosity: 

 

𝜏 ∝  
𝑑𝑢

𝑑𝑦
 

This tells us that the shear stress, , in a fluid is proportional to the velocity gradient - the 

rate of change of velocity across the fluid path. For a “Newtonian” fluid we can write: 

 

𝜏 =  𝜇 
𝑑𝑢

𝑑𝑦
 

where the constant of proportionality, is known as the coefficient of viscosity (or 

simply viscosity). We saw that for some fluids - sometimes known as exotic fluids - the 

value of changes with stress or velocity gradient. We shall only deal with Newtonian 

fluids. 

In this lecture we shall look at how the forces due to momentum changes on the fluid and 

viscous forces compare and what changes take place. 

 

Navier-Stokes Equations 

 

Fluid dynamics is governed by conservation of mass, momentum and energy. For 

incompressible flow and in the absence of any body forces like gravity etc., the Navier-

Stokes Equations are as follows 

 

Conservation of mass: 
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Z- momentum: 
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The first term of the left hand side is the term arising due to accumulation of momentum. 

For steady state this term will be zero. The rest of the terms are known as convective 

terms. The first term of right hand side is the pressure term. Rest of the term in right 

hand side is known as diffusion term and arises due to presence of viscous force (shear 

force). This term becomes zero if the fluid is ideal (or irrotational). 

 

Hence for steady incompressible and irrotational flow the Navier-Stokes equations 

become 

 

Conservation of mass: 
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This is also known as Euler‟s equation. 

 

Laminar and turbulent flow 

 

If we were to take a pipe of free flowing water and inject a dye into the middle of the 

stream, what would we expect to happen? 

This 
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this 

 
 

or this 

 

Actually both would happen - but for different flow rates. The top occurs when the fluid 

is flowing fast and the lower when it is flowing slowly. 

The top situation is known as turbulent flow and the lower as laminar flow. 

 

In laminar flow the motion of the particles of fluid is very orderly with all particles 

moving in straight lines parallel to the pipe walls. 

But what is fast or slow? And at what speed does the flow pattern change? And why 

might we want to know this? 

The phenomenon was first investigated in the 1880s by Osbourne Reynolds in an 

experiment which has become a classic in fluid mechanics. 

He used a tank arranged as above with a pipe taking water from the centre into which he 

injected a dye through a needle. After many experiments he saw that this expression 
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𝜌𝑢𝑑

𝜇
 

where = density, u = mean velocity, d = diameter and = viscosity 

would help predict the change in flow type. If the value is less than about 2000 then flow 

is laminar, if greater than 4000 then turbulent and in between these then in the transition 

zone. 

 

 
This value is known as the Reynolds number, Re: 

𝑅𝑒 =  
𝜌𝑢𝑑

𝜇
 

   Laminar flow:      Re < 2000 

   Transitional flow:    2000 < Re < 4000 

   Turbulent flow:     Re > 4000 

What are the units of this Reynolds number? We can fill in the equation with SI units: 

    

  ρ = kg/m
3
, u = m/s, d = m,  µ = Ns/m

2
 = kg/ms 

 

𝑅𝑒 =  
𝜌𝑢𝑑

𝜇
=  

𝑘𝑔

𝑚3
 
𝑚

𝑠
 
𝑚

1
 
𝑚𝑠

𝑘𝑔
= 1 

i.e. it has no units. A quantity that has no units is known as a non-dimensional (or 

dimensionless) quantity. Thus the Reynolds number, Re, is a non-dimensional number. 

We can go through an example to discover at what velocity the flow in a pipe stops being 

laminar. 
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If the pipe and the fluid have the following properties: 

 

Water density   ρ = 1000 kg/m
3
 

Pipe diameter   d = 0.5 m 

 

(Dynamic) viscosity  µ = 0.55 × 10
-3

 Ns/m
2
 

 

We want to know the maximum velocity when Re is 2000. 

 

𝑅𝑒 =  
𝜌𝑢𝑑

𝜇
= 2000 

𝑢 =  
2000 ×  𝜇

𝜌 𝑑
=  

2000 × 0.55 ×  10−3

1000 × 0.5
= 0.0022 𝑚/𝑠 

 

 If this were a pipe in a house central heating system, where the pipe diameter is typically 

0.015m, the limiting velocity for laminar flow would be, 0.0733 m/s. 

Both of these are very slow. In practice it very rarely occurs in a piped water system - the 

velocities of flow are much greater. Laminar flow does occur in situations with fluids of 

greater viscosity - e.g. in bearing with oil as the lubricant. 

At small values of Re above 2000 the flow exhibits small instabilities. At values of about 

4000 we can say that the flow is truly turbulent. Over the past 100 years since this 

experiment, numerous more experiments have shown this phenomenon of limits of Re for 

many different Newtonian fluids - including gasses. 

What does this abstract number mean? 

We can say that the number has a physical meaning, by doing so it helps to understand 

some of the reasons for the changes from laminar to turbulent flow. 

𝑅𝑒 =  
𝜌𝑣𝑑

𝜇
=  

𝑖𝑛𝑒𝑟𝑡𝑖𝑎 𝑓𝑜𝑟𝑐𝑒

𝑣𝑖𝑠𝑐𝑜𝑢𝑠 𝑓𝑜𝑟𝑐𝑒
 

It can be interpreted that when the inertial forces dominate over the viscous forces (when 

the fluid is flowing faster and Re is larger) then the flow is turbulent. When the viscous 

forces are dominant (slow flow, low Re) they are sufficient enough to keep all the fluid 

particles in line, then the flow is laminar. Reynolds number is essentially a means of 

comparing one flow with another and provided that the corresponding lengths and 

velocities are compared in two flows, the particular choices of length and velocity do not 

matter. 

 

In summary: 

 

Laminar flow 

 

Re < 2000 

„low‟ velocity 
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Dye does not mix with water 

Fluid particles move in straight lines 

Simple mathematical analysis possible 

Rare in practice in water systems. 

 

Transitional flow 



2000 > Re < 4000 

„medium‟ velocity 

Dye stream wavers in water - mixes slightly. 

 

Turbulent flow 

 

Re > 4000 

„high‟ velocity 

Dye mixes rapidly and completely 

Particle paths completely irregular 

Average motion is in the direction of the flow 

Cannot be seen by the naked eye 

Changes/fluctuations are very difficult to detect. Must use laser. 

Mathematical analysis very difficult - so experimental measures are used 

Most common type of flow. 

 

Shear stress, pressure gradient relationship. 

 

Up to this point on the course we have considered ideal fluids where there have been no 

losses due to friction or any other factors. In reality, because fluids are viscous, energy is 

lost by flowing fluids due to friction which must be taken into account. The effect of the 

friction shows itself as a pressure (or head) loss. 

In a pipe with a real fluid flowing, at the wall there is a shearing stress retarding the flow, 

as shown below. 

 
_ _ _ _ _ _ _ 

If a manometer is attached as the pressure (head) difference due to the energy lost by the 

fluid overcoming the shear stress can be easily seen. 

The pressure at 1 (upstream) is higher than the pressure at 2. 
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We can do some analysis to express this loss in pressure in terms of the forces acting on 

the fluid. 

Consider a cylindrical element of incompressible fluid flowing in the pipe, as shown 

 
The pressure at the upstream end is p and at the downstream end pressure has fallen by 

Δp to (p – Δp). The driving force due to pressure (f = Pressure x area) can then be written 

as 

 

Driving force = Pressure force at 1 – Pressure force at 2 

𝑝𝐴 −  𝑝 − ∆𝑝 𝐴 =  ∆𝑝 𝐴 =  ∆𝑝 
𝜋𝑑2

4
  

The retarding force is that due to the shear stress by the walls 

= shear stress x area over which it acts 

      = τw x area of pipe wall 

      = τw πdL 

As the flow is in equilibrium 

Driving force = retarding force 

∆𝑝 
𝜋𝑑2

4
=  𝜏𝑤𝜋𝑑𝐿  

∆𝑝 =  
𝜏𝑤4𝐿

𝑑
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Giving an expression for pressure loss in a pipe in terms of the pipe diameter and the 

shear stress at the wall on the pipe. 

 
The shear stress will vary with velocity of flow and hence with Re. Many experiments 

have been done with various fluids measuring the pressure loss at various Reynolds 

numbers. These results plotted to show a graph of the relationship between pressure loss 

and Re look similar to the figure below: 

 
This graph shows that the relationship between pressure loss and Re can be expressed as 

laminar 

turbulent  

w on a particular fluid. If we knew w we could then use it to give a general equation to 

predict the pressure loss. 

 

Pressure loss during laminar flow in a pipe 

 

In general the shear stress w is almost impossible to measure. But for laminar flow it is 

possible to calculate a theoretical value for a given velocity, fluid and pipe dimension. 
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In laminar flow the paths of individual particles of fluid do not cross, so the flow may be 

considered as a series of concentric cylinders sliding over each other - rather like the 

cylinders of a collapsible pocket telescope.  

 
 

As before, consider a cylinder of fluid, length L, radius r, flowing steadily in the centre of 

a pipe. 

 

We are in equilibrium, so the shearing forces on the cylinder equal the pressure forces. 

Pressure force at the upstream face of control volume = 𝑝 𝜋𝑟2 

Pressure force at the downstream face of control volume =  𝑝 +  
𝜕𝑝

𝜕𝑥
 ∆𝑥 𝜋𝑟2 

The shear force acting on the control volume = 𝜏 × 2𝜋𝑟 ×  ∆𝑥 

 Hence,  

𝑝𝜋𝑟2 −  𝑝 +  
𝜕𝑝

𝜕𝑥
 ∆𝑥 𝜋𝑟2 −  𝜏 × 2𝜋𝑟 ×  ∆𝑥 = 0 

 

or    

−
𝜕𝑝

𝜕𝑥
 ∆𝑥 𝜋𝑟2 −  𝜏 2𝜋𝑟 ∆𝑥 = 0 

 

or     

𝜏 =  − 
𝜕𝑝

𝜕𝑥
 
𝑟

2
 

 

By Newton‟s law of viscosity we have =  𝜇 
𝑑𝑢

𝑑𝑦
 , where y is the distance from the wall. As 

we are measuring from the pipe centre then y = R – r and dy =  - dr, giving 

𝜏 = − 𝜇
𝑑𝑢

𝑑𝑟
 

Which can be combined with the equation above to give 

 

−
𝜕𝑝

𝜕𝑥

𝑟

2
=  − 𝜇 

𝑑𝑢

𝑑𝑟
 

Or      
𝑑𝑢

𝑑𝑟
=  

𝜕𝑝

𝜕𝑥
 
𝑟

2𝜇
 

Integrating we get 
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𝑢 =  
𝜕𝑝

𝜕𝑥
 

1

2𝜇
  𝑟 𝑑𝑟 

The velocity at any point at a distance r from the centre is given by 

𝑢𝑟 =  
𝜕𝑝

𝜕𝑥
 
𝑟2

4𝜇
+  𝐶 

At r = 0 (centerline of the pipe), u = umax and at r = R (pipe wall), u = 0, giving 

 

𝐶 =  − 
𝜕𝑝

𝜕𝑥
 
𝑅2

4𝜇
 

So, an expression for the velocity at a point r from the pipe centre when the flow is 

laminar is 

 

𝑢𝑟 = − 
𝜕𝑝

𝜕𝑥
 

1

4𝜇
  𝑅2 − 𝑟2  

Note that this is a parabolic profile and the velocity profile in the pipe looks similar to the 

figure below. 

 

 
 

The maximum velocity is given by 

𝑢𝑚𝑎𝑥 =  −
1

4𝜇
 
𝜕𝑝

𝜕𝑥
 𝑅2 

 

What is the discharge in the pipe? 

Q =   dQ =   ur  × 2πr dr
R

0

R

0

 

=   − 
1

4𝜇
 
𝜕𝑝

𝜕𝑥
  𝑅2 − 𝑟2  2𝜋𝑟 𝑑𝑟

𝑅

0

 

=   
1

4𝜇
  −

𝜕𝑝

𝜕𝑥
 2𝜋   𝑅2 − 𝑟2  𝑟 𝑑𝑟

𝑅

0

 

or 

𝑄 =  
𝜋

8𝜇
  − 

𝜕𝑃

𝜕𝑥
  𝑅4 



Unit 3        Incompressible Fluid Flow 

 

 

 

Notes on Fluid Mechanics by Dr. D.G. Roychowdhury     92 

This is the Hagen-Poiseuille equation for laminar flow in a pipe. It expresses the 

discharge Q in terms of the pressure gradient 
𝜕𝑝

𝜕𝑥
 , diameter of the pipe and the viscosity of 

the fluid. 

The average velocity is given by 

𝑢𝑎𝑣 =  
𝑄

𝑎𝑟𝑒𝑎
=  

𝜋
8𝜇  −

𝜕𝑝
𝜕𝑥

 𝑅2

𝜋𝑅2
=  

1

8𝜇
  −

𝜕𝑝

𝜕𝑥
 𝑅2 

Hence, 
𝑢𝑚𝑎𝑥

𝑢𝑎𝑣
= 2.0 

We are interested in the pressure loss and want to relate this to the velocity of the flow. 

 

𝑢𝑎𝑣 =  
1

8𝜇
  −

𝜕𝑝

𝜕𝑥
 𝑅2     𝑜𝑟  −  

𝜕𝑝

𝜕𝑥
=  

8𝜇𝑢𝑎𝑣

𝑅2
 

Or 

− dp =   
8μuav

R2
 dx

1

2

1

2

 

Or 

− 𝑝1 − 𝑝2 =  
8𝜇𝑢𝑎𝑣

𝑅2
  𝑥1 − 𝑥2  

Or 

 𝑝1 − 𝑝2 =  
8𝜇𝑢𝑎𝑣

𝑅2
 𝐿 

i.e. 

∆𝑝 =  
32𝜇𝑢𝑎𝑣

𝐷2
 𝐿 

In terms of head, 

𝑕𝑓 =  
∆𝑝

𝜌𝑔
=  

32𝜇𝑢𝑎𝑣

𝜌𝑔𝐷2
 𝐿 

This shows that pressure loss is directly proportional to the velocity when flow is 

laminar. 

It has been validated many times by experiment. 

It justifies two assumptions: 

1. fluid does not slip past a solid boundary 

2. Newton‟s hypothesis. 

 

Steady Laminar Flow between Parallel Planes (Plane Poiseuille Flow). 

 

A flow is called parallel if only one velocity component is different from zero, all fluid 

particles moving in one direction only. 

i.e. v = w = 0 
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From continuity, 
𝜕𝑢

𝜕𝑥
= 0, i.e. the component of u does not depend on x. 

As the flow is laminar, there is no movement of fluid in any direction perpendicular to 

the flow and thus p varies only in the direction of flow. 

 

𝑖. 𝑒.   
𝜕𝑝

𝜕𝑦
=  

𝜕𝑝

𝜕𝑧
= 0 

Let us consider a small element with sides parallel to the coordinate axes. Let the lower 

face of the element be at a distance y from the lower plane and velocity be u. At the upper 

face of the element, at a distance y + δy from the lower plane, the velocity is u + δu. 

 

 

 

 

 

 

  

 

 

If δu is positive, the faster moving fluid just above the element exerts a force on the upper 

face. Similarly, the slower-moving fluid adjacent to the lower face tends to retard the 

element. Thus, there are stresses of magnitude τ on the lower face and τ + δτ on the upper 

face. Let the piezometric pressure be p on the upstream face and p + δp on the 

downstream face. Hence, by balancing the forces we get 

 

 𝑝 −  𝑝 +  𝛿𝑝   𝛿𝑦 +    𝜏 +  𝛿𝜏 −  𝜏  𝛿𝑥 = 0 

−𝛿𝑝 𝛿𝑦 +  𝛿𝜏 𝛿𝑥 = 0 
Or 

𝛿𝑝

𝛿𝑥
=  

𝛿𝜏

𝛿𝑦
 

In the limit, we get  
𝑑𝑝

𝑑𝑥
=  

𝜕𝜏

𝜕𝑦
=  

𝜕

𝜕𝑦
 𝜇

𝜕𝑢

𝜕𝑦
  

since the pressure varies only in the direction of flow 
𝑑𝑝

𝑑𝑥
 is independent of y. Hence, 

integrating the equation with respect to y, we get 

 
𝑑𝑝

𝑑𝑥
𝑦 =   𝜇

𝜕𝑢

𝜕𝑦
 +  𝐴 

Or                                           

𝑑𝑝

𝑑𝑥
 
𝑦2

2
=  𝜇 𝑢 + 𝐴𝑦 + 𝐵 

 

Boundary conditions: 

u = 0 at y = 0 and 2b 

δy 

y 

u+δu

+ 

u 

τ + δτ 

τ 

p + δp p 
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𝜕𝑢

𝜕𝑦
= 0 𝑎𝑡 𝑦 = 𝑏 

Hence, we get B=0  and  𝐴 =  
𝑑𝑝

𝑑𝑥
 𝑏 

Hence, 

𝑢 =  
1

𝜇
  
𝑑𝑝

𝑑𝑥
 
𝑦2

2
− 

𝑑𝑝

𝑑𝑥
 𝑏𝑦  

Or 

𝑢 =  
𝑦2

2𝜇
  

𝑑𝑝

𝑑𝑥
  1 − 2  

𝑏

𝑦
   

Hence, the velocity profile is parabolic and the velocity is maximum at the centre i.e. y = 

b. 

𝑢𝑚𝑎𝑥 =  −
𝑏2

2𝜇
  

𝑑𝑝

𝑑𝑥
 =  

𝑏2

2𝜇
  −

𝑑𝑝

𝑑𝑥
  

Total discharge 

𝑄 =   𝑢𝑑𝑦 =   
1

2𝜇
 
𝑑𝑝

𝑑𝑥
  𝑦2 − 2𝑏𝑦 

2𝑏

0

2𝑏

0

𝑑𝑦 

=  
1

2𝜇
  

𝑑𝑝

𝑑𝑥
  

𝑦3

3
− 

2𝑏𝑦2

2
 

0

2𝑏

 

=  
4𝑏3

6𝜇
  −

𝑑𝑝

𝑑𝑥
  

Hence, 

𝑢𝑎𝑣 =  
𝑄

𝐴
=  

𝑏2

3𝜇
  −

𝑑𝑝

𝑑𝑥
  

 

∴       𝑢𝑚𝑎𝑥 = 1.5 𝑢𝑎𝑣  
 

𝑑𝑝

𝑑𝑥
=  −

3

2
 
𝑄𝜇

𝑏3
=  − 

3𝜇𝑢𝑎𝑣

𝑏2
 

 

The pressure drop relation can be expressed in dimensionless form using friction factor 

and Reynolds number. 

 

Friction factor, 

𝑓 =  
𝜏

1
2 𝜌𝑢2

=
− −

𝑑𝑝
𝑑𝑥

 2𝑏

1
2 𝜌𝑢2

=  
6𝜇𝑢𝑎𝑏 × 2𝑏 

𝜌𝑏2𝑢𝑎𝑣
2

=  
12𝜇

𝜌𝑏𝑢𝑎𝑣
 

Now, 

𝑅𝑒 =  
𝜌𝑢𝑎𝑣 2𝑏

𝜇
 

Hence, 
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𝑓𝑅𝑒 =
12𝜇

𝜌𝑏𝑢𝑎𝑣
 ×

𝜌𝑢𝑎𝑣 2𝑏

𝜇
= 24 

 

i.e. for a plane Poiseuille flow,  f.Re = 24. 

 

Head loss due to friction in a Pipe 

 

Consider a small element of length L. On 

the left hand face the pressure is p1 and on 

the right hand face pressure is p2. The 

shear stress acting on the element is τ. 

Balancing the forces on the element we 

get, 

𝑝1𝐴 − 𝑝2𝐴 −  𝜏𝐿𝑝 = 0 
where, P is the wetted perimeter. 

or  𝐴 𝑝1 − 𝑝2 =  𝜏𝐿𝑃 

or       

 
𝑝1 − 𝑝2

𝐿
 𝐴 = 𝜏 × 𝑃 

Dividing both side by 
𝜋𝑑2

4
 𝐿, we get 

∆𝑝

𝐿
= 𝜏 

𝑃

𝐴
=  

𝜏

𝑚
  , 𝑤𝑕𝑒𝑟𝑒 𝑚 =  

𝐴

𝑃
=  

𝜋
4 𝑑2

𝜋𝑑
=  

𝑑

4
 

Now the shear stress τ can be expressed in terms of skin friction cf as 

𝜏 =  𝑓  
1

2
 𝜌𝑢2  

Hence,             

∆𝑝 = 𝑓
𝐿

𝑚
 

1

2
 𝜌𝑢2 = 4𝑓 

𝐿

𝑑
  

1

2
 𝜌𝑢2  

 

The quantity f is known as Dercy friction factor. 

 

Dercy-Weisbach Equation:- 

∆𝑝 = 4𝑓 
𝐿

𝑑
  

1

2
𝜌𝑢2  

i.e. pressure loss due to friction = 4𝑓 
𝐿

𝑑
 × dynamic pressure. 

Dividing both sides by ρg we get 

𝑕𝑓 =
∆𝑝

𝜌𝑔
= 4𝑓

𝐿

𝑑
 
𝑢2

2𝑔
   

i.e. head loss due to friction = 4𝑓 
𝐿

𝑑
 × dynamic head. 

The pressure or head loss is proportional to pipe length and inversely proportional to 

diameter. The constant or proportionality is called friction factor. 

Very important note:- 

L 

τLP 

p2A  p1A 



Unit 3        Incompressible Fluid Flow 

 

 

 

Notes on Fluid Mechanics by Dr. D.G. Roychowdhury     96 

There is lot of disagreement about what is meant by “friction factor” and what symbol 

should be used to denote it. What is represented here by f is also denoted by λ by some 

authors. Also the head loss is expressed in some book as  

𝑕𝑓 = 𝑓
𝐿

𝑑
 
𝑢2

2𝑔
   

Be very wary of the definition. You should be able to distinguish it by the expression for 

friction factor in laminar flow: 
64

𝑅𝑒
 with the notation here i.e. if you use  

𝑕𝑓 = 𝑓
𝐿

𝑑
 
𝑢2

2𝑔
   

and 
16

𝑅𝑒
 if you use  

𝑕𝑓 = 4𝑓
𝐿

𝑑
 
𝑢2

2𝑔
   

Turbulent flow: 

 

In turbulent flow there is no longer an explicit relationship between the mean shear stress 

τ and mean velocity gradient 𝑑𝑢
𝑑𝑟  because a far greater transfer of momentum arises 

from the net effect of random fluctuations than the relatively small viscous forces. Hence, 

to relate the head loss we require an empirical relation connecting the wall shear stress 

and the average velocity of the pipe. 

 Results of extensive experimentation led to the establishment of the following: 

1. 𝑕𝑓  ∞ 𝐿 

2. 𝑕𝑓  ∞ 𝑢2 

3. 𝑕𝑓  ∞ 
1

𝑑
 

4. 𝑕𝑓  depends on the surface roughness of pipe wall 

5. 𝑕𝑓  depends on the fluid density and viscosity 

6. 𝑕𝑓  is independent of pressure. 

Expressed in a form suitable for dimensional analysis this implies that 

𝑓 =  ∅  𝑢, 𝑑, 𝜌, 𝜇, 𝜖, 𝜖
,
′ , 𝛼  

where, 𝜖 =size of the wall roughness, 𝜖 ′ = is a measure of the spacing of roughness 

particles, 𝛼 =is a form factor, a dimensionless parameter whose value depends on the 

shape of the roughness particles. 

In general for rough pipe, dimensional analysis yields an expression 

𝑓 =  ∅2  
𝜌𝑢𝑑

𝜇
,
𝜖

𝑑
,
𝜖 ′

𝑑
, 𝛼  

Or in terms of Reynolds number 

𝑓 =  ∅2  𝑅𝑒,
𝜖

𝑑
,
𝜖 ′

𝑑
, 𝛼  

Expressions for friction factor f: 

Laminar flow (theory) 

𝑓 =  
16

Re
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Turbulent Flow (Smooth or rough pipe) 

Nikuradse (1933) used sand grains to roughen pipe surfaces. He defined a relative 

roughness 𝜖 𝑑  (or in some books as 
𝑘𝑠

𝑑
 . His experimental curves for the friction factor 

showed 5 regions: 

1. Laminar flow (Re < Recrit ≈ 2000: roughness irrelevant) 

2. Laminar-to-turbulent transition (2000< Re < 4000) 

3. Smooth wall (f is a function of Re only) 

4. Fully-rough walls (f is a function of roughness only) 

5. Intermediate roughness (f is a function of both Re and 𝜖 𝑑 ) 

For smooth pipe: 

Blasius‟s correlation  

 

𝑓 =  
0.079

𝑅𝑒0.25
 

Prandtl correlation 

1

 4𝑓
= 2.01 𝑙𝑜𝑔10  

𝑅𝑒  4𝑓

2.51
 

 For Rough wall pipe: 

 

Von Karman correlation 
1

 4𝑓
= 2.0 𝑙𝑜𝑔10  

3.7 𝑑

𝜖
 

 

For most of the commercial pipe, both roughness and Reynolds number are important. 

Colebrook and White combined smooth and roughness laws to obtain the following 

formula known as Colebrook-White formula 

 

1

 4𝑓
= −2.0 𝑙𝑜𝑔10   

𝜖

3.7𝑑
+  

2.51

𝑅𝑒 4𝑓
  

 

This is the main formula for friction factor. The main difficulty is that f appears both the 

sides of the equation and hence has to be determined iteratively. 

 

Moody Chart 

 

Graphical solution of the Colebrook-White relation. 
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Minor loses 

 

Pipeline systems are subject to two types of losses: 

 frictional losses, also called major losses, due to wall, contributing a continuous 

fall in head over a large distance; 

 minor loses due to abrupt changes in geometry; e.g. pipe junctions, bends, valves, 

fittings of all kind. 

Each type of loss can be quantified using a loss coefficient K, the ratio of pressure loss to 

dynamic pressure (or head loss to dynamic head): 

 

Pressure loss =𝐾  
1

2
𝜌𝑢2  or head loss = 𝐾

𝑢2

2𝑔
 

 

Pipeline friction is just one type of loss, for which 𝐾 = 𝑓 
𝐿

𝑑
 

 

In long pipelines the minor losses may be neglected in comparison with the friction loss. 

But for a short pipeline, these minor losses actually outweigh the friction loss. The minor 

losses arise from sudden changes of velocity (either in magnitude or direction). These 

changes generate large-scale turbulence in which energy is dissipated as heat. The total 

head loss in a pipeline may be calculated as the sum of normal friction for the pipe 

considered and additional losses (i.e. minor losses). 

 

 

 

 

Re = ud/ν 

f 

𝜖/𝑑 

f = 16/Re 0.01 

0.0025 

0.025 
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Loss due to Sudden Expansion: 

Let us consider a fluid control volume 

BCDEFG as shown in the figure. The net 

force acting towards the right on the 

control volume is 

𝑝1𝐴1 +  𝑝′ 𝐴2 − 𝐴1 − 𝑝2𝐴2 

where 𝑝′  represents the mean pressure of 

the eddying fluid over the annular face GD. 

We assume 𝑝′  is equal to p1. The net force 

is thus (p1 – p2)A2. From Newton‟s second 

law, the net force equal to rate of change of momentum, i.e. 

 𝑝1 − 𝑝2 𝐴2 =  𝜌𝑄 𝑢2 − 𝑢1  
 

 𝑝1 − 𝑝2 =  𝜌
𝑄

𝐴2

 𝑢2 − 𝑢1 =  𝜌𝑢2 𝑢2 − 𝑢1  

From the energy equation for a constant density fluid we have 

 

l
hz

g

up
z

g

up


22

2

22

2

11

  

 

or   𝑕𝑙 =  
𝑝1−𝑝2

𝛾
+ 

𝑢1
2−𝑢2

2

2𝑔
=  

𝑢2 𝑢2−𝑢1 

𝑔
+

𝑢1
2−𝑢2

2

2𝑔
=  

 𝑢1−𝑢2 
2

2𝑔
 

From continuity 𝐴1𝑢1 = 𝐴2𝑢2 

Hence, 

𝑕𝑙 =  
𝑢1

2

2𝑔
  1 −

𝐴1

𝐴2
 

2

=
𝑢2

2

2𝑔
  

𝐴2

𝐴1
− 1 

2

  

or     

𝑕𝑙 = 𝐾 
𝑢1

2

2𝑔
               𝑤𝑕𝑒𝑟𝑒   𝐾 =   1 −

𝐴1

𝐴2
 

2

  

Exit loss: 

 

If 𝐴2 → ∞, then K becomes equal to 1 and the above equation becomes 

 

𝑕𝑙 = 𝐾 
𝑢1

2

2𝑔
  

This happens at the outlet of a submerged pipe discharged 

into a large reservoir as shown in the figure. 

 

 

 

 

 

 

u1 

p1 

A1 

 

 

u2 

p2 

A2 
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Loss due to Sudden Contraction: 

 

The loss due to sudden contraction is given by 

𝑕𝑙 =  
𝑢2

2

2𝑔
  

𝐴2

𝐴𝑐
−  1 

2

=  
𝑢2

2

2𝑔
  

1

𝐶𝑐
−  1 

2

= 𝐾 
𝑢2

2

2𝑔
  

Where Ac is the area of vena-contracta and Cc is the contraction coefficient. 

The values of loss coefficients are given in the following table. 

 

d2/d1 0 0.2 0.4 0.6 0.8 1.0 

K 0.5 0.45 0.38 0.28 0.14 0 

 

Entry loss: 

If 𝐴1 → ∞, then K becomes equal to 0.5 and the above equation becomes 

 

𝑕𝑙 = 0.5 
𝑢1

2

2𝑔
  

This is limiting case corresponds to a flow from large 

reservoir into a sharp-edge pipe as shown in the figure. 

 

 

 

Equivalent Length for Pipe Fitting Loss Calculation 

 

The loss coefficient K may also be defined in terms of an equivalent length of straight 

pipe, of same diameter as that including the fitting, that would result in the same 

frictional loss as that incurred by flow separation through fitting. That is  

𝑕𝑓 = 4𝑓
𝐿𝑒

𝑑
 
𝑢2

2𝑔
= 𝐾

𝑢2

2𝑔
 

where Le is the equivalent length of pipe that would yield a friction loss equivalent to the 

particular fitting. 

Thus 

𝐿𝑒 =  
𝐾𝑑

4𝑓
 

where f is known. Le can be expressed as „n diameters‟ i.e. 𝑛 =  
𝐿𝑒

𝑑
 . The value of Le thus 

depends on the value of f and therefore on Reynolds number and the roughness of the 

pipe. 

Hence total pressure drop through a pipeline of length L and diameter d can be expressed 

as 

𝑕𝑓 = 4𝑓
 𝐿 +  𝐿𝑒 

𝑑
 
𝑢2

2𝑔
 

Typical values of loss coefficients are given below. 
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Pipeline Calculation 

 

The objective is to establish the relationship between available head and quantity of flow. 

  Available head = sum of head losses along the pipe. 

Available head is the overall drop in head from start to end of pipe (often the difference 

between still-water levels), sometimes supplemented by additional pumping head. Head 

losses are proportional to the dynamic head 𝑢
2

2𝑔 . Fluid then flows through the pipe at 

precisely the right velocity u (or discharge Q) so that the above criteria is satisfied. 

 

Pipe parameters are illustrated below. Although a reservoir is indicated at each end of the 

pipe, this is simply a diagrammatic way of saying “a point at which the total head is 

known”. 

 
Typical pipeline problems are: given two of the following parameters, find the third. 

 Head loss:  h 

 Quantity of flow: Q 

 Diameter:  d 

Other parameters: length L, roughness 𝜖, kinematic viscosity ν ad minor loss coefficient 

K. 

Calculation involve: 

(1) Head losses 

e.g. with friction factor f and minor loss coefficient K: 

 

𝑕 =  4𝑓
𝐿

𝑑
+  𝐾  

𝑢2

2𝑔
 

(2) Expression for loss coefficients: 
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e.g. friction losses f and minor loss coefficient K which can be obtained 

from the methods described earlier.  

 

Pressure Head, Velocity Head, Potential Head and Total Head. 

 

By looking again at the example of the reservoir with which feeds a pipe we will see how 

these different heads relate to each other. 

Consider the reservoir below feeding a pipe which changes diameter and rises (in reality 

it may have to pass over a hill) before falling to its final level. 

 
To analyses the flow in the pipe we apply the Bernoulli equation along a streamline from 

point 1 on the surface of the reservoir to point 2 at the outlet nozzle of the pipe. And we 

know that the total energy per unit weight or the total head does not change - it is 

constant - along a streamline. But what is this value of this constant? We have the 

Bernoulli equation 

Hz
g

up
z

g

up


2

2

22

1

2

11

22 
 

We can calculate the total head, H, at the reservoir, p1  0 as this is atmospheric and 

atmospheric gauge pressure is zero, the surface is moving very slowly compared to that 

in the pipe so u1  0, so all we are left with is total head H z1 the elevation of the 

reservoir. 

A useful method of analysing the flow is to show the pressures graphically on the same 

diagram as the pipe and reservoir. In the figure above the total head line is shown. If we 

attached piezometers at points along the pipe, what would be their levels when the pipe 

nozzle was closed? (Piezometers, as you will remember, are simply open ended vertical 

tubes filled with the same liquid whose pressure they are measuring). 
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As you can see in the above figure, with zero velocity all of the levels in the piezometers 

are equal and the same as the total head line. At each point on the line, when u = 0 

Hz
p


  

The level in the piezometer is the pressure head and its value is
g

p
or

p


 . 

What would happen to the levels in the piezometers (pressure heads) if the if water was 

flowing with velocity = u? We know from earlier examples that as velocity increases so 

pressure falls … 

 

Hz
g

up


2

2

  

We see in this figure that the levels have reduced by an amount equal to the velocity head 

u
2
/2g. Now as the pipe is of constant diameter we know that the velocity is constant along 

the pipe, so the velocity head is constant and represented graphically by the horizontal 

line shown (this line is known as the hydraulic grade line). 
 

What would happen if the pipe were not of constant diameter? Look at the figure below 

where the pipe from the example above is replaced be a pipe of three sections with the 

middle section of larger diameter 
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The velocity head at each point is now different. This is because the velocity is different 

at each point. By considering continuity we know that the velocity is different because 

the diameter of the pipe is different. Which pipe has the greatest diameter? Pipe 2, 

because the velocity, and hence the velocity head, is the smallest. 

This graphical representation has the advantage that we can see at a glance the pressures 

in the system. For example, where along the whole line is the lowest pressure head? It is 

where the hydraulic grade line is nearest to the pipe elevation i.e. at the highest point of 

the pipe. 

 

Energy and Hydraulic Grade Line 
 

Energy grade line or Total Energy Line and hydraulic grade line are the graphical means 

of portraying the energy changes in the pipe lines. 

 Three elevations may be drawn: 
 

Pipe centerline   z          geometric height 

 

Hydraulic grade line (HGL) 
𝑝

𝜌𝑔
+ 𝑧                    piezometric height 

Energy grade line (EGL)         
𝑝

𝜌𝑔
+

𝑢2

2𝑔
+ 𝑧           total head. 

where p is the gauge pressure. 

  

 
 

 Energy losses due to friction. 

 

In a real pipe line there are energy losses due to friction - these must be taken into 

account as they can be very significant. How would the pressure and hydraulic grade 

lines change with friction? Going back to the constant diameter pipe, we would have a 

pressure situation like this shown below 

 

How can the total head be changing? We have said that the total head - or total energy per 

unit weight – is constant. We are considering energy conservation, so if we allow for an 

amount of energy to be lost due to friction the total head will change. We have seen the 

equation for this before. But here it is again with the energy loss due to friction written as 

a head and given the symbol hf . This is often known as the head loss due to friction. 
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f
hz

g

u

g

p
z

g

u

g

p


2

2

22

1

2

11

22 
 

Energy Grade Line (EGL) or Total Energy Line (TEL) 

 

 Shows the change in total head along the pipeline 

 Starts and ends at still-water levels 

 Small discontinuities correspond to entry loss, exit loss or other minor losses. 

Steady downward slope reflects pipe friction (slope change if pipe radius changes; 

Large discontinuities correspond to turbines (loss of head) or pump (gain of 

head). 

 The EGL represents the maximum height to which water may be delivered. 
 

Hydraulic Grade line (HGL) 

 

 Shows the change in piezometric head along the pipeline. 

 For pipe flow the HGL lies a distance p/ρg above the pipe centerline. Thus, the 

difference between pipe elevation and hydraulic grade line gives the static 

pressure p. If the HGL drops below pipe elevation, this means negative gauge 

pressures (i.e. less than atmospheric). A HGL more than patm/ρg (≈ 10 m of water) 

below the pipeline is impossible. 

 The HGL is the height to which the liquid would rise in a piezometer tube. 

 

The EGL is always the dynamic head 𝑢
2

2𝑔  above the HGL. For uniform pipes (constant 

u), the two grade lines are parallel.  
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Examples: 

 

Two reservoirs A and B are connected by pipeline 1 and 2 as shown in the figure. The 

level difference between the liquid for reservoirs A and B is H. Let u be the velocity, L 

the length, d the diameter of the pipe. The liquid will flow from reservoir A to B due to 

the level difference. Since the driving head is H, this should be equal to all the losses in 

the pipes. 

 

The losses consists of 

a) Entry loss between reservoir A to pipe 1 which is equal to 

0.5 
𝑢1

2

2𝑔
 

b) Friction loss in pipe 1 which can be written as 

4𝑓 
𝐿1

𝑑1
 
𝑢1

2

2𝑔
 

c) Loss due to sudden expansion in pipe 1 and 2 

(1) 

H 

(2) 

A 

B 

TEL 

HGL 

Entry 

loss 

Exit 

loss 

Pipe friction 

Sudden expansion 



Unit 3        Incompressible Fluid Flow 

 

 

 

Notes on Fluid Mechanics by Dr. D.G. Roychowdhury     107 

 𝑢1 − 𝑢2 
2

2𝑔
 

d) Friction loss in pipe 2 

 

4𝑓 
𝐿2

𝑑2
 
𝑢2

2

2𝑔
 

e) Exit loss to Reservoir B 

𝑢2
2

2𝑔
 

The total loss consists is the sum of all the losses mentioned above and equals to H. Since 

u1 and u2 are related by A1u1 = A2u2, either u1 or u2 and hence the discharge Q may be 

determined if H, pipe lengths, diameters and friction factors are known. 

 

Problem on pipes in series 

 

Problem 1: Two reservoirs A and B have a difference level of 9 m and are connected by 

pipeline over the first part, which is 15 m long and then 250 mm diameter for the 

remaining 45 m length. The entrance to and exit from the pipes are sharp and the change 

in section between pipe 1 and 2 is sudden. The friction coefficient f is 0.01 for both pipes. 

List the losses of head and calculate system flow rate and hydraulic gradient. 

 

Solution: 

a) Head losses: 

(i) Entry loss to pipe 1:  
 

𝑕1 = 0.5 
𝑢1

2

2𝑔
 

(ii) Friction loss to pipe 1: 

𝑕𝑓1 = 4𝑓 
𝐿1

𝑑1
 
𝑢1

2

2𝑔
= 4 × 0.01 ×  

15

0.2
 ×  

𝑢1
2

2𝑔
= 3 

𝑢1
2

2𝑔
 

(iii) Loss due to sudden expansion: 

𝑕2 =
 𝑢1 − 𝑢2 

2

2𝑔
=   1 −

𝐴1

𝐴2
 

2

 
𝑢1

2

2𝑔
= 0.1296 

𝑢1
2

2𝑔
  

(iv) Friction loss in pipe 2 

𝑕𝑓2 = 4𝑓 
𝐿2

𝑑2
 
𝑢2

2

2𝑔
= 4 × 0.01 × 

45

0.25
×  

𝐴1

𝐴2
 

2

 ×  
𝑢1

2

2𝑔
= 2.949 

𝑢1
2

2𝑔
 

(v) Exit loss: 

𝑕3 =
𝑢2

2

2𝑔
=  

𝐴1

𝐴2
 

2

 ×  
𝑢1

2

2𝑔
= 0.4096  ×  

𝑢1
2

2𝑔
  

Hence, total head loss = h1 + hf1 + h2 + hf2 + h3 

Or 

9 =   0.5 + 3 + 0.1296 + 2.929 + 0.4096 
𝑢1

2

2𝑔
= 6.9682 

𝑢1
2

2 × 9.806
= 0.3553 𝑢1

2 
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Or       u1 = 5.033 m/s 

Hence Volume flow rate is given by 

𝑄 = 𝐴1𝑢1 =
𝜋

4
 0.2 2 × 5.033 =  0.1581 𝑚3/𝑠 

Hence, 

 h1 = 0.6458 m;  h2 = 0.1674 m;  h3 = 0.529 m 

 hf1= 3.8748 m;  hf2 = 3.809 m 

 

 

 

 

 

 

 

 

 

 

Flow through Siphon 

 

Water discharges from reservoir A through a 100 mm diameter pipe 15 m long which 

rises to its highest point B, 1.5 m above the free surface of the reservoir, and discharges 

direct to atmosphere C, 4 m below the free surface at A. The length of pipe L1 from A to 

B is 5 m and length of pipe L2 from B to C is 10 m. Both entrance and exit are sharp and 

ZA 

ZB 

A 

B 

C 

ZC 
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the value of f is 0.08. Calculate a) mean velocity of water leaving pipe at C and b) the 

pressure in the pipe at B. 

 

Solution: 

a) Determination of velocity u 

 

Total energy at A = Total energy at C + losses 

 

𝑝𝐴

𝛾
+  

𝑢𝐴
2

2𝑔
+ 𝑍𝐴 =

𝑝𝐶

𝛾
+  

𝑢𝐶
2

2𝑔
+ 𝑍𝐶 +  𝑙𝑜𝑠𝑠𝑒𝑠 

 

Now at both A and C, the pressure is atmospheric and hence 

pA = pC = 0 (gauge pressure) 

Velocity at A, uA = 0 

Hence, 

𝑍𝐴 =  
𝑢𝐶

2

2𝑔
+ 𝑍𝐶 +  𝑙𝑜𝑠𝑠𝑒𝑠 

Or 

𝑍𝐴 − 𝑍𝐶  =  
𝑢𝐶

2

2𝑔
+  𝑙𝑜𝑠𝑠𝑒𝑠 

Entry loss: 

𝑕1 = 0.5 
𝑢𝐶

2

2𝑔
 

Pipe friction loss: 

 

𝑕𝑓 = 4𝑓 
 𝐿1 + 𝐿2 

𝑑
 
𝑢𝐶

2

2𝑔
 

There is no exit loss because the water is discharged into atmosphere without any change 

of cross-section. 

Hence, 

𝑍𝐴 − 𝑍𝐶 =  
𝑢𝐶

2

2𝑔
  1 + 0.5 + 4 𝑓 

𝐿1 + 𝐿2

𝑑
  

Or 

4 =
𝑢𝐶

2

2𝑔
  1 + 0.5 + 4 × 0.08 ×  

5 + 10

0.1
   

Or     uC = 1.26 m/s. 

b) To find the pressure at B, PB 

𝑝𝐴

𝛾
+  

𝑢𝐴
2

2𝑔
+ 𝑍𝐴 =

𝑝𝐵

𝛾
+  

𝑢𝐵
2

2𝑔
+ 𝑍𝐵 +  𝑙𝑜𝑠𝑠𝑒𝑠 

Or 

𝑍𝐴 =
𝑝𝐵

𝛾
+  

𝑢𝐵
2

2𝑔
+ 𝑍𝐵 + 0.5 

𝑢𝐵
2

2𝑔
+ 4𝑓 

𝐿1

𝑑
 
𝑢𝐵

2

2𝑔
 

Since the pipe diameter is same, uB = uC = u = 1.26 m/s 
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Hence, 

𝑝𝐵 =  𝛾 𝑍𝐴 − 𝑍𝐵 −
𝛾𝑢2

2𝑔
  1 + 0.5 + 4𝑓 

𝐿1

𝑑
   

= - 28.58 kN/m
2
 i.e 28.58 kN/m

2
 below atmospheric pressure 

 

Problem on parallel pipes 

 

Two sharp-edged pipes of diameter d1 = 50 mm and d2 = 100 mm each of length 100 m 

are connected in parallel between two reservoirs which have a difference of level h = 10 

m. If Darcy coefficient f = 0.008 for each pipe, calculate: a) the rate of flow through each 

pipe, b) the diameter d of a single pipe of 100 m long which would give the same flow if 

it was substituted for the original two pipes. 

For flow in pipe 1 

 

𝑝𝐴

𝛾
+  

𝑢𝐴
2

2𝑔
+ 𝑧𝐴 =  

𝑝𝐵

𝛾
+  

𝑢𝐵
2

2𝑔
+ 𝑧𝐵 +   0.5

𝑢1
2

2𝑔
+  4𝑓

𝐿1

𝑑1

𝑢1
2

2𝑔
+

𝑢1
2

2𝑔
   

Since pA = pB = atmospheric pressure, we can neglect these terms and if reservoirs are 

lerge uA and uB are negligible. Hence, 

 

𝑧𝐴 − 𝑧𝐵 =   1.5 +  4𝑓
𝐿1

𝑑1
  

𝑢1
2

2𝑔
 

Or 

10 =  1.5 +
4 × 0.008 × 100

0.05
 
𝑢1

2

2𝑔
  

Hence,  u1= 1.731 m/s 

𝑄1 =  
𝜋

4
  𝑑1 

2 × 𝑢1 =  
𝜋

4
 0.05 2 × 1.731 = 0.003 

𝑚3

𝑠
 

Similarly for pipe 2 

h 

u1, d1,L1 

u2, d2,L2 
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𝑧𝐴 − 𝑧𝐵 =   1.5 +  4𝑓
𝐿2

𝑑2
  

𝑢2
2

2𝑔
 

or 

10 =  1.5 +
4 × 0.008 × 100

0.1
 
𝑢2

2

2𝑔
 

Or u2 = 2.42 m/s 

𝑄2 =  
𝜋

4
  𝑑2 

2 × 𝑢2 =  
𝜋

4
 0.1 2 × 2.42 = 0.19 

𝑚3

𝑠
 

b) Replacing by equivalent single pipe 

 

Q = Q1 + Q2 = 0.0034 + 0.019 0.0224 m
3
/s 

𝑧𝐴 − 𝑧𝐵 =   1.5 +  4𝑓
𝐿

𝑑
  

𝑢2

2𝑔
 

 

10 =  1.5 +
4 × 0.008 × 100

𝑑
 
𝑢2

2𝑔
 

Now   

𝑄 = 𝐴 𝑢 =  
𝜋

4
 𝑑2 × 𝑢 

Or 

𝑢 =  
4 𝑄

𝜋𝑑2
=  

4 × 0.0224

𝜋𝑑2
=  

0.02852

𝜋𝑑2
 

Therefore, 

 

10 =  1.5 +
4 × 0.008 × 100

𝑑
 
 0.02852 2

2𝑔𝑑4
 

0r        241212d
5
 – 1.5 d – 3.2 = 0 

Approximate answer can be obtained by neglecting the second term. 

 

Hence,  241212 d
5
 = 3.2  or d = 0.1058 m 
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Boundary Layers 

 

When a fluid flows over a stationary surface, e.g. the bed of a river, or the wall of a pipe, 

the fluid touching the surface is brought to rest by the shear stress o at the wall. The 

velocity increases from the wall to a maximum in the main stream of the flow. 

Looking at this two-dimensionally we get the above velocity profile from the wall to the 

centre of the flow. 

This profile doesn‟t just exit, it must build up gradually from the point where the fluid 

starts to flow past the surface - e.g. when it enters a pipe. 

 

 

If we consider a flat plate in the middle of a fluid, we will look at the build up of the 

velocity profile as the fluid moves over the plate. Upstream the velocity profile is 

uniform, (free stream flow) a long way downstream we have the velocity profile we have 

talked about above. This is the known as fully developed flow. But how do we get to that 

state? This region, where there is a velocity profile in the flow due to the shear stress at 

the wall, we call the boundary layer. The stages of the formation of the boundary layer 

are shown in the figure below: 
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We define the thickness of this boundary layer as the distance from the wall to the point 

where the velocity is 99% of the “free stream” velocity, for example, the velocity in the 

middle of the pipe or river. 

Boundary layer thickness, = distance from wall to point where u = 0.99 umainstream 

The value of will increase with distance from the point where the fluid first starts to 

pass over the boundary - the flat plate in our example. It increases to a maximum in fully 

developed flow. 

Correspondingly, the drag force D on the fluid due to shear stress o at the wall increases 

from zero at the start of the plate to a maximum in the fully developed flow region where 

it remains constant. We can calculate the magnitude of the drag force by using the 

momentum equation.  

Our interest in the boundary layer is that its presence greatly affects the flow through or 

round an object. So here we will examine some of the phenomena associated with the 

boundary layer and discuss why these occur. 

 

Formation of the boundary layer 

 

Above we noted that the boundary layer grows from zero when a fluid starts to flow over 

a solid surface. As is passes over a greater length more fluid is slowed by friction 

between the fluid layers close to the boundary. Hence the thickness of the slower layer 

increases. 

The fluid near the top of the boundary layer is dragging the fluid nearer to the solid 

surface along. The mechanism for this dragging may be one of two types: 

The first type occurs when the normal viscous forces (the forces which hold the fluid 

together) are large enough to exert drag effects on the slower moving fluid close to the 

solid boundary. If the boundary layer is thin then the velocity gradient normal to the 

surface, (du/dy), is large so by Newton‟s law of viscosity the shear stress, = (du/dy), 

is also large. The corresponding force may then be large enough to exert drag on the fluid 

close to the surface. 

As the boundary layer thickness becomes greater, so the velocity gradient become 

smaller and the shear stress decreases until it is no longer enough to drag the slow fluid 

near the surface along. If this viscous force was the only action then the fluid would come 

to a rest. 

It, of course, does not come to rest but the second mechanism comes into play. Up to this 

point the flow has been laminar and Newton‟s law of viscosity has applied. This part of 

the boundary layer is known as the laminar boundary layer 

The viscous shear stresses have held the fluid particles in a constant motion within layers. 

They become small as the boundary layer increases in thickness and the velocity gradient 

gets smaller. Eventually they are no longer able to hold the flow in layers and the fluid 

starts to rotate. 
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This causes the fluid motion to rapidly become turbulent. Fluid from the fast moving 

region moves to the slower zone transferring momentum and thus maintaining the fluid 

by the wall in motion. Conversely, slow moving fluid moves to the faster moving region 

slowing it down. The net effect is an increase in momentum in the boundary layer. We 

call the part of the boundary layer the turbulent boundary layer. 

At points very close to the boundary the velocity gradients become very large and the 

velocity gradients become very large with the viscous shear forces again becoming large 

enough to maintain the fluid in laminar motion. This region is known as the laminar sub-

layer. This layer occurs within the turbulent  zone and is next to the wall and very thin – 

a few hundredths of a mm. 

 

 

 

 

 Surface roughness effect 

 

Despite its thinness, the laminar sub-layer can play a vital role in the friction 

characteristics of the surface. 

This is particularly relevant when defining pipe friction. In turbulent flow if the height 

of the roughness of a pipe is greater than the thickness of the laminar sub-layer then this 

increases the amount of turbulence and energy losses in the flow. If the height of 

roughness is less than the thickness of the laminar sub-layer the pipe is said to be smooth 

and it has little effect on the boundary layer. 

In laminar flow the height of roughness has very little effect 

 
 Boundary layers in pipes 

 

As flow enters a pipe the boundary layer will initially be of the laminar form. This will 

change depending on the ration of inertial and viscous forces; i.e. whether we have 

laminar (viscous forces high) or turbulent flow (inertial forces high). 

From earlier we saw how we could calculate whether a particular flow in a pipe is 

laminar or turbulent using the Reynolds number. 
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If we only have laminar flow the profile is parabolic – as proved in earlier lectures – as 

only the first part of the boundary layer growth diagram is used. So we get the top 

diagram in the above figure. 

If turbulent (or transitional), both the laminar and the turbulent (transitional) zones of the 

boundary layer growth diagram are used. The growth of the velocity profile is thus like 

the bottom diagram in the above figure. 

Once the boundary layer has reached the centre of the pipe the flow is said to be fully 

developed. (Note that at this point the whole of the fluid is now affected by the boundary 

friction.) 

The length of pipe before fully developed flow is achieved is different for the two types 

of flow. The length is known as the entry length. 

Laminar flow entry length 120 diameter 

Turbulent flow entry length 60 diameter 
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Some basic formula used in Boundary layer 

 

a) For laminar boundary layer: 

 

The boundary layer thickness δ can be obtained from 

 
𝛿

𝑥
=  

5

 𝑅𝑒𝑥

             𝑤𝑕𝑒𝑟𝑒, 𝑅𝑒𝑥 =  
𝜌𝑈∞𝑥

𝜇
 

Where x = distance from the leading edge. 

 

The skin friction coefficient or drag coefficient can be obtained from 

 

𝐶𝐷 =  
1.328

 𝑅𝑒𝑙

            𝑤𝑕𝑒𝑟𝑒, 𝑅𝑒𝑙 =   
𝜌𝑈∞𝐿

𝜇
 

Where L = Length of the plate. 

 

The drag on the plate of length L and width b can be obtained from 

 

𝐹𝐷 =  𝐶𝐷 ×
1

2
 𝜌 𝐴 𝑈∞

2 =  
1.328

 𝑅𝑒𝑙

× 
1

2
 𝜌 × 𝑏 × 𝐿 ×  𝑈∞

2  

Note : for estimating the drag force from both sides of the plate, the value obtained from 

the above equation has to be multiplied by 2. 

 

b) For turbulent boundary layer: If the Reynolds number is greater than equal to 5 

×10
5
, then it is turbulent boundary layer. 

 

The boundary layer thickness δ can be obtained from 

 
𝛿

𝑥
=  

0.37

 𝑅𝑒𝑥 0.2
             𝑤𝑕𝑒𝑟𝑒, 𝑅𝑒𝑥 =  

𝜌𝑈∞𝑥

𝜇
 

The skin friction coefficient or drag coefficient can be obtained from 

 

𝐶𝐷 =  
0.072

 𝑅𝑒𝑙 
0.2

            𝑤𝑕𝑒𝑟𝑒, 𝑅𝑒𝑙 =   
𝜌𝑈∞𝐿

𝜇
 

Where L = Length of the plate. 

 

The drag on the plate of length L and width b can be obtained from 

 

𝐹𝐷 =  𝐶𝐷 ×
1

2
 𝜌 𝐴 𝑈∞

2 =  
0.072

 𝑅𝑒𝑙 0.2
× 

1

2
 𝜌 × 𝑏 × 𝐿 ×  𝑈∞

2  
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Boundary layer separation 

 

Convergent flows: Negative pressure gradients 
 

If flow over a boundary occurs when there is a pressure decrease in the direction of flow, 

the fluid will accelerate and the boundary layer will become thinner. 

This is the case for convergent flows. 

 
The accelerating fluid maintains the fluid close to the wall in motion. Hence the flow 

remains stable and turbulence reduces. Boundary layer separation does not occur. 

 

Divergent flows: Positive pressure gradients 

 

When the pressure increases in the direction of flow the situation is very different. Fluid 

outside the boundary layer has enough momentum to overcome this pressure which is 

trying to push it backwards. The fluid within the boundary layer has so little momentum 

that it will very quickly be brought to rest, and possibly reversed in direction. If this 

reversal occurs it lifts the boundary layer away from the surface as shown below. 
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This phenomenon is known as boundary layer separation. 

At the edge of the separated boundary layer, where the velocities change direction, a line 

of vortices occur (known as a vortex sheet). This happens because fluid to either side is 

moving in the opposite direction. 

 

This boundary layer separation and increase in the turbulence because of the vortices 

results in very large energy losses in the flow. 

These separating / divergent flows are inherently unstable and far more energy is lost 

than in parallel or convergent flow. 

 
 A divergent duct or diffuser 

 

The increasing area of flow causes a velocity drop (according to continuity) and hence a 

pressure rise (according to the Bernoulli equation). 

 
Increasing the angle of the diffuser increases the probability of boundary layer separation. 

In a Venturi meter it has been found that an angle of about 6provides the optimum 
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balance between length of meter and danger of boundary layer separation which would 

cause unacceptable pressure energy losses. 

 

 Tee-Junctions 

 

Assuming equal sized pipes, as fluid is removed, the velocities at 2 and 3 are smaller than 

at 1, the entrance to the tee. Thus the pressure at 2 and 3 are higher than at 1. These two 

adverse pressure gradients can cause the two separations shown in the diagram above. 

 
 

Y-Junctions 

 

Tee junctions are special cases of the Y-junction with similar separation zones occurring. 

See the diagram below. 

 
Downstream, away from the junction, the boundary layer reattaches and normal flow 

occurs i.e. the effect of the boundary layer separation is only local. Nevertheless fluid 

downstream of the junction will have lost energy. 

 

Bends 

 

Two separation zones occur in bends as shown above. The pressure at b must be greater 

than at a as it must provide the required radial acceleration for the fluid to get round the 
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bend. There is thus an adverse pressure gradient between a and b so separation may occur 

here. 

Pressure at c is less than at the entrance to the bend but pressure at d has returned to near 

the entrance value - again this adverse pressure gradient may cause boundary layer 

separation. 

 
 

Flow past a cylinder 
 

The pattern of flow around a cylinder varies with the velocity of flow. If flow is very 

slow with the Reynolds number (v d/less than 0.5, then there is no separation of the 

boundary layers as the pressure difference around the cylinder is very small. The pattern 

is something like that in the figure below. 

 

If 2 < Re < 70 then the boundary layers separate symmetrically on either side of the 

cylinder. The ends of these separated zones remain attached to the cylinder, as shown 

below. 
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Above a Re of 70 the ends of the separated zones curl up into vortices and detach 

alternately from each side forming a trail of vortices on the down stream side of the 

cylinder. This trial in known as a Karman vortex trail or street. This vortex trail can 

easily be seen in a river by looking over a bridge where there is a pier to see the line of 

vortices flowing away from the bridge. The phenomenon is responsible for the whistling 

of hanging telephone or power cables. A more significant event was the famous failure of 

the Tacoma narrows bridge. Here the frequency of the alternate vortex shedding matched 

the natural frequency of the bridge deck and resonance amplified the vibrations until the 

bridge collapsed. (The frequency of vortex shedding from a cylinder can be predicted. 

We will not try to predict it here but a derivation of the expression can be found in many 

fluid mechanics text books.) 

 
Looking at the figure above, the formation of the separation occurs as the fluid 

accelerates from the center to get round the cylinder (it must accelerate as it has further to 

go than the surrounding fluid). It reaches a maximum at Y, where it also has also dropped 

in pressure. The adverse pressure gradient between here and the downstream side of the 

cylinder will cause the boundary layer separation if the flow is fast enough, (Re > 2.) 
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 Aerofoil 

 

Normal flow over a aerofoil (a wing cross-section) is shown in the figure below with the 

boundary layers greatly exaggerated. 
 

 
The velocity increases as air it flows over the wing. The pressure distribution is similar to 

that shown below so transverse lift force occurs. 

 
 

If the angle of the wing becomes too great and boundary layer separation occurs on the 

top of the aerofoil the pressure pattern will change dramatically. This phenomenon is 

known as stalling. 

 
When stalling occurs, all, or most, of the „suction‟ pressure is lost, and the plane will 

suddenly drop from the sky! The only solution to this is to put the plane into a dive to 

regain the boundary layer. A transverse lift force is then exerted on the wing which gives 

the pilot some control and allows the plane to be pulled out of the dive. 
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Calculation of Drag and Lift Force 

 

The drag force is given by 

𝐹𝐷 =  𝐶𝐷 ×
1

2
 𝜌 𝐴 𝑈∞

2  

The Lift force is given by 

𝐹𝐿 =  𝐶𝐿 ×
1

2
 𝜌 𝐴 𝑈∞

2  

Where,      CD = Coefficient of drag, and 

                 CL = Coefficient of lift. 

The resultant force is given by 

𝐹𝑅 =   𝐹𝐷
2 +  𝐹𝐿

2 

 

The Power required  

 

𝑃 =  
𝐹𝑜𝑟𝑐𝑒 𝑖𝑛 𝑡𝑕𝑒 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑚𝑜𝑡𝑖𝑜𝑛 × 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦

1000
 𝑘𝑊 =  

𝐹𝐷 × 𝑈∞

1000
 

 


