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FLIUD KINEMATICS AND FLUID DYNAMICS       12 

Fluid Kinematics - Flow visualization - lines of flow - types of flow - velocity field and acceleration - continuity 

equation (one and three dimensional differential forms)- Equation of streamline - stream function - velocity 

potential function - circulation - flow net – fluid dynamics - equations of motion - Euler's equation along a 

streamline - Bernoulli's equation – applications - Venturi meter, Orifice meter, Pitot tube - dimensional analysis 

- Buckingham's  theorem- applications - similarity  laws  and models. 

 

Concepts of Fluid Flow 

 

Objectives 

 Introduce concepts necessary to analyse fluids in motion 

 Identify differences between Steady/unsteady uniform/non-uniform compressible / 

incompressible flow 

 Demonstrate streamlines and stream tubes 

 Introduce the Continuity principle through conservation of mass and control volumes 

 Derive the Euler‟s equation and Bernoulli (energy) equation 

 Demonstrate practical uses of the Bernoulli and continuity equation in the analysis of 

flow 
 

Fluid dynamics: The analysis of fluid in motion. 

The motion of a fluid is usually complex. The study of static fluid (fluid at rest) was 

simplified by the absence of shear forces. But when a fluid flows over a solid surface or other 

boundary, whether stationary or moving, a velocity gradient is created at right angles to the 

boundary. The resulting change of velocity from layer to layer of fluid flowing parallel to the 

boundary gives rise to shear stresses in the fluid. The motion of the fluid particles is 

controlled by their inertia and the effect of the shear stresses exerted by the surrounding fluid. 

The resulting motion is not always easy to solve mathematically and it is often necessary to 

supplement theory by experiments. 

Fluid motion can be predicted in the same way as the motion of solids by use of the 

fundamental laws of physics and the physical properties of the fluid.  

When a force is applied, its behaviour can be predicted from Newton‟s laws, which state: 

1. A body will remain at rest or in a state of uniform motion in a straight line until acted 

upon by an external force. 

2. The rate of change of momentum of a body is proportional to the force applied and 

takes place in the direction of action of that force. 

3. Action and reaction are equal and opposite. 

Some fluid flow is very complex: e.g.   flow behind a car;   waves on beaches;   hurricanes 

and tornadoes;   any other atmospheric phenomenon 

All can be analysed with varying degrees of success (in some cases hardly at all!). 

There are many common situations which analysis gives very accurate predictions. 
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Flow Classification 

 

 uniform flow: Flow conditions (velocity, pressure, cross-section or depth) are the same at 

every point in the fluid. 

 non-uniform: Flow conditions are not the same at every point. 

 steady: Flow conditions may differ from point to point but DO NOT change with time. 

 unsteady: Flow conditions change with time at any point. 

 

Fluid flowing under normal circumstances - a river for example - conditions vary from point 

to point we have non-uniform flow. If the conditions at one point vary as time passes then we 

have unsteady flow. 

 

Combining the above we can classify any flow in to one of four type: 

1. Steady uniform flow. Conditions do not change with position in the stream or with time. 

An example is the flow of water in a pipe of constant diameter at constant velocity. 

2. Steady non-uniform flow. Conditions change from point to point in the stream but do not 

change with time. An example is flow in a tapering pipe with constant velocity at the 

inlet - velocity will change as you move along the length of the pipe toward the exit. 

3. Unsteady uniform flow. At a given instant in time the conditions at every point are the 

same, but will change with time. An example is a pipe of constant diameter connected to 

a pump pumping at a constant rate which is then switched off. 

4. Unsteady non-uniform flow. Every condition of the flow may change from point to point 

and with time at every point. For example waves in a channel. 

 

Frames of Reference 

 

Whether a given flow is described as steady or unsteady will depend upon the situation of the 

observer. This is because the motion is relative and only can be described by a frame of 

reference - determined by observer.  

Suppose there is a motion of fluid particles. If we observe the motion of fluid with respect to 

a reference system fixed relative to the particles then the frame of reference is known as 

Eulerian method of analysis. If the reference system moves with the particles then the system 

is known as Lagrangian method of analysis. 

 

Compressible or Incompressible 

 

All fluids are compressible - even water - their density will change as pressure changes. 

Under steady conditions, and provided that the changes in pressure are small, it is usually 

possible to simplify analysis of the flow by assuming it is incompressible and has constant 

density. As you will appreciate, liquids are quite difficult to compress - so under most steady 

conditions they are treated as incompressible. In some unsteady conditions very high 

pressure differences can occur and it is necessary to take these into account - even for liquids. 

Gasses, on the contrary, are very easily compressed, it is essential in most cases to treat these 

as compressible, taking changes in pressure into account. 
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Three-dimensional flow 

 

In general fluid flow is three-dimensional. 

Pressures and velocities and other flow properties change in all directions. 

In many cases the greatest changes only occur in two directions or even only in one. 

Changes in the other direction can be effectively ignored making analysis much more simple. 

 

Flow is one dimensional if the flow parameters (such as velocity, pressure, depth etc.) vary 

only in the direction of flow not across the cross-section. 

The flow may be unsteady with the parameters varying in time but not across the cross-

section e.g. Flow in a pipe. 

Note that since flow must be zero at the pipe wall - yet non-zero in the centre – there is a 

difference of parameters across the cross-section. Should this be treated as two-dimensional 

flow? 

Possibly - but it is only necessary if very high accuracy is required. A correction factor is 

then usually applied. 

 
Flow is two-dimensional if it can be assumed that the flow parameters vary in the direction of 

flow and in one direction at right angles to this direction. Streamlines in two- dimensional 

flow are curved lines on a plane and are the same on all parallel planes. An example is flow 

over a weir for which typical streamlines can be seen in the figure below. Over the majority 

of the length of the weir the flow is the same - only at the two ends does it change slightly. 

Here correction factors may be applied. 

 
In this course we will only be considering steady, incompressible one and two- dimensional 

flow. 

 

 Streamlines and streamtubes 

 

In analysing fluid flow it is useful to visualise the flow pattern. This can be done by drawing 

lines joining points of equal velocity i.e. velocity contours. These lines are known as 
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streamlines. Here is a simple example of the streamlines around a cross-section of an aircraft 

wing shaped body: 
 

 

When fluid is flowing past a solid boundary, e.g. the surface of an aerofoil or the wall of a 

pipe, fluid obviously does not flow into or out of the surface. So very close to a boundary 

wall the flow direction must be parallel to the boundary. 

 

 

 

At all points the direction of the streamline is the direction of the fluid velocity: this is how 

they are defined. Close to the wall the velocity is parallel to the wall so the streamline is also 

parallel to the wall. 

It is also important to recognise that the position of streamlines can change with time - this is 

the case in unsteady flow. In steady flow, the position of streamlines does not change. 

 
 

 

 

 

 

 

 

 

 

A useful technique in fluid flow analysis is to consider only a part of the total fluid in 

isolation from the rest. This can be done by imagining a tubular surface formed by 

streamlines along which the fluid flows. This tubular surface is known as a streamtube. 

Some things to know about streamlines 

Close to a solid boundary streamlines are parallel to that boundary 

 Because the fluid is moving in the same direction as the streamlines, fluid can 

not cross a streamline. 

 Streamlines can not cross each other. If they were to cross this would indicate 

two different velocities at the same point. This is not physically possible. 

 The above point implies that any particles of fluid starting on one streamline will 

stay on that same streamline throughout the fluid. 

 

Close to a solid boundary streamlines are parallel to that boundary
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And in a two-dimensional flow we have a streamtube which is flat (in the plane of the paper): 

 

The “walls” of a streamtube are made of streamlines. As we have seen above, fluid cannot 

flow across a streamline, so fluid cannot cross a streamtube wall. The streamtube can often 

be viewed as a solid walled pipe. A streamtube is not a pipe - it differs in unsteady flow as 

the walls will move with time. And it differs because the “wall” is moving with the fluid. 
 

Path line 

 

If the individually particle of fluid is coloured, or otherwise rendered visible, it will describe 

a path line, which is the trace showing the position at successive intervals of time of a 

particle which started from a given point. 

 

Streak line or Filament line 

 

If the flow pattern is made visible by injecting a stream of dye into a liquid or smoke into a 

gas, the result will be a streak line. It gives an instantaneous picture of the positions of all the 

particles which have passed through a particular point. Since the flow pattern may vary from 

moment to moment, a streak line will not necessarily be the same as a path line. 

 

For steady flow, stream line, path line and streak line will be the same. 
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Flow rate. 

 

 Mass flow rate 

 

If we want to measure the rate at which water is flowing along a pipe. A very simple way of 

doing this is to catch all the water coming out of the pipe in a bucket over a fixed time 

period. Measuring the weight of the water in the bucket and dividing this by the time taken to 

collect this water gives a rate of accumulation of mass. This is known as the mass flow rate. 

𝑚 =  
𝑑𝑚

𝑑𝑡
=  

𝑚𝑎𝑠𝑠

𝑡𝑖𝑚𝑒 𝑡𝑎𝑘𝑒𝑛 𝑡𝑜 𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒 𝑡𝑕𝑖𝑠 𝑚𝑎𝑠𝑠

 
 

 

Volume flow rate - Discharge. 
 

More commonly we need to know the volume flow rate - this is more commonly known as 

discharge. (It is also commonly, but inaccurately, simply called flow rate). The symbol 

normally used for discharge is Q. 

The discharge is the volume of fluid flowing per unit time. Multiplying this by the density of 

the fluid gives us the mass flow rate. 

𝑑𝑖𝑠𝑐𝑕𝑎𝑟𝑔𝑒, 𝑄 =  
𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑓𝑙𝑢𝑖𝑑

𝑡𝑖𝑚𝑒
 

 

An important aside about units should be made here: 

As has already been stressed, we must always use a consistent set of units when applying 

values to equations. It would make sense therefore to always quote the values in this 

consistent set. This set of units will be the SI units. Unfortunately, and this is the case above, 

these actual practical values are very small or very large (0.001008m3/s is very small). These 

numbers are difficult to imagine physically. In these cases it is useful to use derived units, 

and in the case above the useful derived unit is the litre. (1litre = 1.0 10 –3  m3). So the 

solution becomes 1008 l/s. It is far easier to imagine 1 litre than 1.0 10 –3 m3. Units must 

always be checked, and converted if necessary to a consistent set before using in an equation. 

Discharge and mean velocity. 

 

If we know the size of a pipe, and we know the discharge, we can deduce the mean velocity 
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If the area of cross section of the pipe at point X is A, and the mean velocity here is um . 

During a time t, a cylinder of fluid will pass point X with a volume A um t. The volume 

per unit time (the discharge) will thus be 

 

𝑄 =  
𝑣𝑜𝑙𝑢𝑚𝑒

𝑡𝑖𝑚𝑒
=  

𝐴 × 𝑢𝑚 × 𝑡

𝑡
 

 

Q = A um 
 

Note how carefully we have called this the mean velocity. This is because the velocity in the 

pipe is not constant across the cross section. Crossing the centreline of the pipe, the velocity 

is zero at the walls increasing to a maximum at the centre then decreasing symmetrically to 

the other wall. This variation across the section is known as the velocity profile or 

distribution. A typical one is shown in the figure below. 

 
This idea, that mean velocity multiplied by the area gives the discharge, applies to all 

situations - not just pipe flow. 
 

Velocity and Acceleration 

 

Let V be the velocity vector and u, v, w are its component in x, y and z direction. So 

  u = f1(x, y, z, t) 

  v = f2(x, y, z, t) 

  w = f3(x, y, z, t)  

If ax, ay, az are the acceleration in x, y and z direction respectively, then by chain rule 
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 are called the local or temporal acceleration. 

The other terms are known as convective acceleration. 
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Continuity 

 

Matter cannot be created or destroyed - (it is simply changed in to a different form of matter). 

This principle is known as the conservation of mass and we use it in the analysis of flowing 

fluids. The principle is applied to fixed volumes, known as control volumes (or surfaces), 

like that in the figure below: 

 

For any control volume the principle of conservation of mass says 

 

 

 

 

For steady flow there is no increase in the mass within the control volume, so 

 

 

 

 

This can be applied to a streamtube such as that shown below. No fluid flows across the 

boundary made by the streamlines so mass only enters and leaves through the two ends of 

this streamtube section. 

 

We can write 

  Mass entering per unit time at end 1 = mass leaving per unit time at end 2 

ρ1δA1u1 = ρ2δA2u2 = constant = m 

or in terms of mean velocities 

Mass entering per unit time  =  Mass leaving per unit time  +  Increase of mass in the 

control volume per unit time 

 

For steady flow 

Mass entering per unit time  =  Mass leaving per unit time 
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ρ1A1um1 = ρ2A2um2 = constant = m 

 

When the fluid can be considered incompressible, i.e. the density does not change, 1 = 2 = 

so (dropping the m subscript) 
 

 

 

This equation is a very powerful tool in fluid mechanics and will be used repeatedly 

throughout the rest of this course. 
 

Continuity Equation in Three Dimensions 

 

 

 

 

 

 

 

 

 
Consider a control volume with sides ∆x, ∆y, ∆z in x, y and z directions respectively. 

Considering the flow in x direction 

Mass flow through the left face in unit time = ρu ∆y∆z. 

In general both mass density ρ and velocity u will change in the x direction. So 

Mass flow through the right face in unit time =   zyxu
x

u 












  

Thus, 

 Net outflow in unit time in x direction =   zyxu
x





 

Similarly, 

 Net outflow in unit time in y direction =   zyxv
y





 

and 

 Net outflow in unit time in z direction =   zyxw
z





 

Therefore, 

 Total net outflow in unit time =       zyxw
z

v
y

u
x


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
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

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
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
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


 

Also,  

 Change of mass in control volume per unit volume = zyx
t





 

A1 u1 A2 u2 Q 

 This is the form of the continuity equation most often used. 

 

u(x + ∆x) u(x) 



Unit - 2      Fluid  Kinematics and Dynamics 

 

 

Notes on Fluid Mechanics by Dr. D.G. Roychowdhury     45 

As per continuity 

 

Mass entering per unit time = Mass leaving per unit time + Increase of mass in the 

        control volume per unit time 

or 

 

Total out flow in unit time + Increase of mass in the control volume per unit time = 0 

or 
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For steady flow  
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Hence, continuity equation becomes 
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For incompressible flow density is constant and hence, 
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For two dimensions the equation further simplifies to 

 0









y

v

x

u
 

 

Some example applications 

 

We can apply the principle of continuity to pipes with cross sections which change along 

their length. 

Consider the diagram below of a pipe with a contraction: 
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A liquid is flowing from left to right and the pipe is narrowing in the same direction. By the 

continuity principle, the mass flow rate must be the same at each section - the mass going 

into the pipe is equal to the mass going out of the pipe. So we can write: 

A1 1 u1 A22 u 2  

(with the sub-scripts 1 and 2 indicating the values at the two sections) 

As we are considering a liquid, usually water, which is not very compressible, the density 

changes very little so we can say 12 . This also says that the volume flow rate is 

constant or that 

Discharge at section 1 = Discharge at section 2 

Q1  Q2 

A1 u1 = A2 u2 

For example, if area A1 = 10 m
2 

and A2 = 3 m
2
 and the upstream velocity u1 = 2.1 m/s, then 

the downstream mean velocity can be calculated by 

.s/m0.7
A

uA
u

2

11

2
  

Notice how the downstream velocity only changes from the upstream by the ratio of the two 

areas of the pipe. As the area of the circular pipe is a function of the diameter we can reduce 

the calculation further, 

 

𝑢2 =  
𝐴1

𝐴2
 𝑢1 =  

𝜋𝑑1
2/4

𝜋𝑑2
2/4

𝑢1 =
𝑑1

2

𝑑2
2  𝑢1 =   

𝑑1

𝑑2
 

2

𝑢1   

 

Now try this on a diffuser, a pipe which expands or diverges as in the figure below, 

 

 
Another example of the use of the continuity principle is to determine the velocities in pipes 

coming from a junction. 

 

 

 

 

 



Unit - 2      Fluid  Kinematics and Dynamics 

 

 

Notes on Fluid Mechanics by Dr. D.G. Roychowdhury     47 

 

 

 

 

 

 
 
  
 
 
Total mass flow into the junction = total mass flow out of the junction 

 1 Q1 2 Q 2 + 3 Q3 

When the flow is incompressible 1 2 = 3 
 

 Q1  Q 2 + Q3 

A1 u1 = A2 u2 + A3 u3 
 

Example: If pipe 1 diameter = 50 mm, mean velocity = 2 m/s, pipe 2 diameter = 40 mm and 

takes 30% of total discharge, pipe 3 diameter = 60 mm. What are the values of discharge and 

mean velocity in each pipe? 

 
Two-dimensional Ideal Flow 
 

An ideal fluid is a purely hypothetical fluid which is assumed to have no viscosity and no 

compressibility. All real fluids posses viscosity and are in some degree compressible. 

Nevertheless there are many instances in which behaviour of real fluids quite closely 

approaches that of ideal fluid. Adjacent to the solid wall there is a thin layer in which 

viscosity effects are predominant and real fluid treatment in this thin layer is necessary. 

Outside this thin layer, viscous effects are negligible and flow is similar to that of inviscid 

fluid. 

For two dimensional flow, let co-ordinate axes be OX and OY and let u = velocity 

component parallel to OX and v = velocity component parallel to OY. q is the velocity vector 

such that q
2
 = u

2
 + v

2
. 

 

Stream Function 

 

We shall now consider the motion of an incompressible fluid in two 

dimensions. The motion in all planes parallel to OXY is same as in this plane 

and there is no component of velocity perpendicular to this plane. Let us 

consider a layer of fluid lying between the plane OXY and  a parallel plane at 

unit distance from it. Let A be a fixed point and P is  any point in the 

plane. These points are joined by a pair of curves  AMP and ANP, which 

together form a closed region. Since the fluid is incompressible, we have 

  Flux across ANP = flux across AMP  

where we adopt the convection that the flux is positive in the sense from right 

to left across the curve. Now regard AMP is a fixed curve  while the curve 

ANP is allowed to vary its situation. The flux across the curve ANP is fixed so 



Unit - 2      Fluid  Kinematics and Dynamics 

 

 

Notes on Fluid Mechanics by Dr. D.G. Roychowdhury     48 

long as its end points A and P are given. Since, A is a fixed 

point, the flux across ANP is thus a function co-ordinates x,y 

of point P. This function is called the stream function and 

represented by ψ(x,y). When the flow is steady ψ is 

independent of time but for unsteady flow it becomes a 

function of three variables x, y and t. 

Let us calculate the increment dψ of stream function in 

passing from P to P‟ where PP‟ is parallel to OX and equal to 

infinitesimal distance dx. We may pass from fixed point A to 

P‟ by any path, so we choose the path AMPP‟. The values of 

stream function at P‟ is thus 

 Ψ (x+dx,y) = flux across AMP + flux across PP‟ 

                                      = ψ (x,y) + v dx 

For component of velocity normal to PP‟ is v. Hence we have 

  Ψ (x+dx,y) - ψ (x,y) = v dx 

or vdxdx
x





 

i.e. v
x





 

 

If PP‟ is parallel to OY and equal to infinitesimal dy, then 

by similar argument, 

Ψ (x,y+dy) - ψ (x,y) = - u dx 

 

or u
y





 

Thus, whenever we know Ψ, we may obtain the two 

velocity components of velocity from 

x
vand

y
u









  

Physically, the stream function is the volume rate of flow per unit distance normal to the 

plane motion between a stream line in a fluid and an arbitrary base streamline. The stream 

function is constant along any streamline at the instant considered. 

 

Flow along a curve, Circulation 

 

 APB is some curve joining points A and B and lying wholly 

within the fluid.  Let PP‟ be an element of the curve of length ds and let θ 

be the angle between the tangent at P and the velocity of the fluid there at 

the instant considered. Then the flow from A to B along the curve is 

defined by the integral  

B

A

dscosq . If we represent the flow from A to B 

as AB then 
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    

B

A

dscosqAB  

It is often convenient to represent the flow along a line ABCDE by symbol ABCDE . Then 

by definition 

   DECDBCABABCDE   

It is also evident that 

    BAAB   

In general, AB has a definite value only when the curve joining A 

and B is specified. When A and B coincide, and the curve 

connecting them is accordingly a closed circuit, the flow is called 

the circulation in the circuit. The circulation in a given circuit may 

differ from zero while no particles of the fluid „circulates‟ i.e. 

describes a closed curve. To illustrates this, let us consider the 

counterclockwise circulation in the rectangular circuit ABCD, 

when the velocity at the instant considered is given by 

U = by,  v = 0,  w = 0 

Then we have AB  zero since the fluid is at rest on 

AB, and BC is zero since the component of velocity 

along BC is zero. On CD we have q = uh and cosθ = -

1, since the positive sense of the tangent to the circuit 

is opposite to that of motion. Hence 

  bkhCD   

and DA is zero since the velocity is perpendicular to 

DA. 

Finally the circulation is  

.bkhDACDBCAB   

It is notable that the circulation is here proportional to the area of the circuit. This is always 

true for sufficiently small circuits lying in a given plane and enclosing a fixed point. 

We shall now show that when a given circuit is divided into a pair of circuits, the circulation 

in the given circuit is equal to the sum of the circulations in pair of circuits. In the fig., the 

points A and B on the given circuit are joined by an arbitrary curve, which need not be the 

plane but must lie within the fluid. Let Γ be the circulation 

in the given circuit ADBCA while Γ1 and Γ2 are the 

circulations in the circuits ABCA and ADBA respectively, 

where positive sense of circulation is same for all circuits. 

Then 

    BADBADCABCAB
21

  

             CABCDBAD  

 
21

 

Evidently we can now carry on subdivision of the circuits 

as far as we please and we shall always have Γ equal to the 
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sum of the circulations in the sub-circuits. 

Vorticity 
 

An example of the elementary circuit arising from the 

subdivision of a larger one we consider the elementary 

rectangle δx ×δy in size. The velocities along the sides 

have the average values shown, the arrows in each case 

indicating the direction.  

 Now AB = u δx. 

 and xy
y

u
uCD 



















  

 yx
y

u
CDAB 




  

 Similarly, yx
x

v
DABC 




  

 yx
y

u

x

v
DACDBCAB 























  

The expression in the bracket is called the component of vorticity of the fluid along the 

normal to the plane of the circuit ABCDA and is represented by the symbol  (zeta). Now the 

vorticity at a point can be defined as the ratio of circulation round an infinitesimal circuit 

there to the area of the circuit (in case of two dimensional flow). 

  
y

u

x

v

Area

nCirculatio
,Vorticity









 . 

It can be shown that the vorticity components are twice the rate of rotation of the fluid 

element. 

 

Irrotational Flow 

 

If the vorticity is zero at all points in a region, then the flow in the region is said to be 

irrotational. Hence, irrotational flow means that there is zero angular velocity of the fluid 

element about their centre. Since the fluid has zero viscosity, no tangential or shear stresses 

may be applied to the fluid elements. The pressure forces act through the centre of the 

elements and can cause no rotation; therefore no torque may be applied to the fluid elements. 

If a fluid element is initially at rest, it cannot be set in rotation; if it is rotating, the rotation 

cannot be changed. 

For 2 dimensional flow to be irrotational we have 

   0
y

u

x

v










  

Now   
x

vand
y

u








  

So putting the values of u and v we get 
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   0.e.i0
yx

2

2

2

2

2










 

Velocity Potential 

 

It is convenient to introduce a new function φ, which is the velocity potential such that  

    u
x





   (negative sign by convention). 

 

    v
y





  

    w
z





  

Now  
yxy

u
2









 

 

 
yxx

v
2









 

0
yxyxy

u

x

v
22




















  

Hence for velocity potential to exist, the flow must be irrotational. 

Now from the continuity equation for incompressible fluid 

 0
z

w

y

v

x

u















 

or 0
zyx

2

2

2

2

2

2















 

or 0
2

  

This is Laplace equation. Any function which satisfies Laplace equation is called a harmonic 

function. Hence we can see that the velocity potential of an incompressible flow is 

necessarily a harmonic function. 

For two dimensional flow, the equation of continuity in terms of velocity potential for 

incompressible flow becomes 

  0
yx

2

2

2

2










 

Since the flow is irrotational we have ξ = 0 

The stream function for two dimensional flow can written as  

 0
yx

2

2

2

2










 

Thus both the velocity potential and stream functions are here harmonic functions. 
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Flownet 

 

In two-dimensional flow, the flownet is of great benefit. The line given by φ(x,y) = constant 

is called an equipotential line. It is a line along which the value of φ (the velocity potential) 

does not change. 

Let us be the component of fluid velocity in the direction of length ds with direction cosines 

l,m,n. Then 

  
sz

n
y

m
x

lnwmvluu
s

































  

Now let ds lie in a surface on which φ is constant. Then 
s


 is zero and this proves that there 

is no velocity component tangent to equipotential line. Therefore, the velocity vector must be 

everywhere normal to an equipontetial line. The line ψ (x,y) = constant is a streamline and is 

everywhere tangent to velocity vector. Streamline and equipotential lines are therefore 

orthogonal i.e. they intersect at right angles. A flownet is composed of a family of 

equipotential lines and a corresponding family of stream lines with the constant varying in 

arithmetical progression. In steady flow when boundaries are stationary, the boundaries are 

themselves become part of the flownet, as they are streamlines. 
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Euler Equation of motion in a a Streamline 

 

Assumptions:- 

 

1. Motion along a streamline 

2. Frictionless fluid, and 

3. Steady flow 

 

Consider a prismatic element of mass ρδAδs is moving 

in positive s direction. Since the fluid is frictionless, no 

shear force is acting on the fluid. 

Force on the upstream face = p δA 

Force on the downstream face = As
s

p
p 













   

Body force acting in s direction = ρgδAδs cosθ. 

From Newton‟s second law 

    Σ F = δm as  we get 

 

 
s

asAcossAgAs
s

p
pAp 













  

where as is the acceleration of the fluid particle. Dividing throughout by ρδAδs we get 

0acosg
s

p1

s







 

Now, cosθ = 
s

z

s

z









  and v = v(s,t) 

dt
t

v
ds

s

v
dv









  

t

v

s

v
v

t

v

dt

ds

s

v

dt

dv
a

s



















  

0
t

v

s

v
v

s

z
g

s

p1






















 

Since for steady flow 0
t

v





 

We get,    0
s

z
g

s

v
v

s

p1

















  

Since p, z and v are functions of s only, we can write 

0gdzvdv
dp




 

This is the Euler‟s equation of motion in a streamline. 
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Bernoulli’s Equation 

 

The Euler‟s equation can be integrated provided relation between p and ρ is known. For a 

constant density ρ is constant and hence integrating we get, 

.constgz
2

vp
2




 

Since, γ = ρg we get, 

.constz
g2

vp
z

g2

vp

2

2

22

1

2

11






 

The each term of Bernoulli‟s equation can be interpreted as a form of energy. 

 



p
→ Flow work or flow energy per unit mass. 

2

v
2

→ Kinetic energy per unit mass. 

gz   → Potential energy per unit mass. 

 

 

Bernoulli‟s equation is one of the most important/useful equations in fluid mechanics. It may 

be written, 

.constz
g2

v

g

p
z

g2

v

g

p

2

2

22

1

2

11






 

 
 

 
 
 
 
 
 
 
 
 

All these conditions are impossible to satisfy at any instant in time! Fortunately for many real 

situations where the conditions are approximately satisfied, the equation gives very good 

results. 
 

By the principle of conservation of energy the total energy in the system does not change, 

Thus the total head does not change. So the Bernoulli equation can be written 

.constHz
g2

v

g

p
2




 

As stated above, the Bernoulli equation applies to conditions along a streamline. We can 

apply it between two points, 1 and 2, on the streamline in the figure below 

Bernoulli‟s equation has some restrictions in its applicability, they are: 

 Flow is steady; 

 Density is constant (which also means the fluid is incompressible); 

 Friction losses are negligible. 

 The equation relates the states at two points along a single streamline, (not 

conditions on two different streamlines). 
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Two points joined by a streamline 

 

Total energy per unit weight at 1 = total energy per unit weight at 2 

Or 

Total head at 1 = Total head at 2 

Or 

2

2

22

1

2

11

22
z

g

v

g

p
z

g

v

g

p



 

 

This equation assumes no energy losses (e.g. from friction) or energy gains (e.g. from a 

pump) along the streamline.  
 

An example of the use of the Bernoulli equation. 

 
When the Bernoulli equation is combined with the continuity equation the two can be used to 

find velocities and pressures at points in the flow connected by a streamline. 

Here is an example of using the Bernoulli equation to determine pressure and velocity at 

within a contracting and expanding pipe. 

 

A fluid of constant density = 960 kg/m3   is flowing steadily through the above tube. The 

diameters at the sections are d1 100mm and d2 80mm. The gauge pressure at 1 is p1 200 

kN /m 
2
  and the velocity here is u1  5m/ s . We want to know the gauge pressure at section 2. 

We shall of course use the Bernoulli equation to do this and we apply it along a streamline 

joining section 1 with section 2. 

The tube is horizontal with z1 = z2. So Bernoulli‟s equation becomes 

      2

2

2

112
uu

2
pp 


  

But we do not know the value of u2.We can calculate this from the continuity equation 
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2211
uAuA   

1

2

2

1

2

11

2
u

d

d

A

uA
u














  

        = 7.8125 m/s. 

Notice how the velocity has increased while the pressure has decreased. The phenomenon - 

that pressure decreases as velocity increases - sometimes comes in very useful in 

engineering. (It is on this principle that carburettor in many car engines work - pressure 

reduces in a contraction allowing a small amount of fuel to enter). 

Here we have used both the Bernoulli equation and the Continuity principle together to solve 

the problem. Use of this combination is very common. We will be seeing this again 

frequently throughout the rest of the course. 
 

Applications of the Bernoulli Equation 

 

The Bernoulli equation can be applied to a great many situations not just the pipe flow we 

have been considering up to now. In the following sections we will see some examples of its 

application to flow measurement from tanks, within pipes as well as in open channels. 

 

Pitot Tube 

 

If a stream of uniform velocity flows into a blunt body, the stream lines take a pattern similar 

to this: 

 
Note how some move to the left and some to the right. But one, in the centre, goes to the tip 

of the blunt body and stops. It stops because at this point the velocity is zero - the fluid does 

not move at this one point. This point is known as the stagnation point. 

From the Bernoulli equation we can calculate the pressure at this point. Apply Bernoulli 

along the central streamline from a point upstream where the velocity is u1 and the pressure p1 

to the stagnation point of the blunt body where the velocity is zero, u2 = 0. Also z1 = z2. 

2

2

22

1

2

11
z

g2

u

g

p
z

g2

u

g

p






 

g

p

g2

u

g

p
2

2

11





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2

112
u

2

1
pp   

This increase in pressure which brings the fluid to rest is called the dynamic pressure. 

 Dynamic pressure = 2

1
u

2

1
  

or converting this to head (using 
g

p
h


 ) 

 Dynamic head = 
g2

u
2

1
 

 

The total pressure is know as the 

stagnation pressure (or total pressure) 

 Stagnation pressure = 2

11
u

2

1
p   

or in terms of head 

 Stagnation head = 
g2

u

g

p
2

11



 

Energy losses due to friction and the change in pressure imparted by pumps are often 

specified in terms of head. For pumps the rate of working i.e. power is given by 

power = ρgQH 

 

The blunt body stopping the fluid does not have to be a solid. I could be a static column of 

fluid. Two piezometers, one as normal and one as a Pitot tube within the pipe can be used in 

an arrangement shown below to measure velocity of flow. 

 
Using the above theory, we have the equation for p2, 

 

2

112
u

2

1
pp   

2

112
u

2

1
ghgh   

 
12

hhg2u   

 

We now have an expression for velocity obtained from two pressure measurements and the 

application of the Bernoulli equation. 
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Pitot Static Tube 

 

The necessity of two piezometers and thus two readings make this arrangement a little 

awkward. Connecting the piezometers to a manometer would simplify things but there are 

still two tubes. The Pitot static tube combines the tubes and they can then be easily 

connected to a manometer. A Pitot static tube is shown below. The holes on the side of the 

tube connect to one side of a manometer and register the static head, (h1), while the central 

hole is connected to the other side of the manometer to register, as before, the stagnation 

head (h2). 
 
 

 
 
 

Consider the pressures on the level of the centre line of the Pitot tube and using the theory of 

the manometer 

pB =  p2 + ρg X 

pA =  p1 + ρg (X – h) + ρman gh 

Now,      pA = pB 

p1 + ρg (X – h) + ρman gh = p2 + ρg X 

We know that 2

11static2
u

2

1
ppp  , substituting this to the above gives 

  2

11man1
u

2

1
phgp   

 






man

1

gh2
u  

 

The Pitot / Pitot-static tubes give velocities at points in the flow. It does not give the overall 

discharge of the stream, which is often what is wanted. It also has the drawback that it is 

liable to block easily, particularly if there is significant debris in the flow. 

 
Venturi Meter 
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The Venturi meter is a device for measuring discharge in a pipe. It consists of a rapidly 

converging section which increases the velocity of flow and hence reduces the pressure. It 

then returns to the original dimensions of the pipe by a gently diverging „diffuser‟ section. By 

measuring the pressure differences the discharge can be calculated. This is a particularly 

accurate method of flow measurement as energy losses are very small. 

Applying Bernoulli‟s theorem along the streamline from point 1 to point 2 in the narrow 

throat of the Venturi meter, we have 

2

2

22

1

2

11

22
z

g

v

g

p
z

g

v

g

p


  

By using the continuity equation we can eliminate velocity u2 

Q = u1A1 = u2A2 

 

𝑢2 =  
𝑢1𝐴1

𝐴2
 

 
 

 
Substituting this into and rearranging the Bernoulli equation we get 

 

𝑝1 − 𝑝2

𝜌𝑔
+ 𝑧1 − 𝑧2 =  

𝑢1
2

2𝑔
   

𝐴1

𝐴2
 

2

− 1  
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𝑢1 =   
2𝑔  

𝑝1 − 𝑝2

𝜌𝑔 + 𝑧1 − 𝑧2 

 
𝐴1

𝐴2
 

2

−  1

 

To get the theoretical discharge this is multiplied by the area. To get the actual discharge 

taking into account the losses due to friction, we include a coefficient of discharge 

 

Qideal = u1A1 

Qactual = Cd Qideal = Cd u1A1 

 

𝑄𝑎𝑐𝑡𝑢𝑎𝑙 = 𝐶𝑑𝐴1𝐴2   
2𝑔  

𝑝1 − 𝑝2

𝜌𝑔 + 𝑧1 − 𝑧2 

𝐴1
2 − 𝐴2

2  

 

This can also be expressed in terms of manometer readings 

 

𝑝1 +  𝜌𝑔𝑧1 =  𝑝2 +  𝜌𝑚𝑎𝑛 𝑔𝑕 +  𝜌𝑔 𝑧2 − 𝑕  
 

𝑝1 − 𝑝2

𝜌𝑔
+  𝑧1 − 𝑧2 = 𝑕  

𝜌𝑚𝑎𝑛

𝜌
−  1  

Thus the discharge can be expressed in terms of the manometer readings as: 

 

𝑄𝑎𝑐𝑡𝑢𝑎𝑙 = 𝐶𝑑𝐴1𝐴2  
2𝑔 𝑕  

𝜌𝑚𝑎𝑛

𝜌 −  1 

𝐴1
2 − 𝐴2

2  

 

Notice how this expression does not include any terms for the elevation or orientation (z1 or 

z2) of the Venturi meter. This means that the meter can be at any convenient angle to 

function. 

The purpose of the diffuser in a Venturi meter is to assure gradual and steady deceleration 

after the throat. This is designed to ensure that the pressure rises again to something near to 

the original value before the Venturi meter. The angle of the diffuser is usually between 6 

and 8 degrees. Wider than this and the flow might separate from the walls resulting in 

increased friction and energy and pressure loss. If the angle is less than this the meter 

becomes very long and pressure losses again become significant. The efficiency of the 

diffuser of increasing pressure back to the original is rarely greater than 80%. 

Flow Through Orifice in a Pipe  

We are to consider the flow through square-edge orifice in a pipe. The shape of the holes 

edges are as they are (sharp) to minimise frictional losses by minimising the contact between 

the hole and the liquid - the only contact is the very edge. 



Unit - 2      Fluid  Kinematics and Dynamics 

 

 

Notes on Fluid Mechanics by Dr. D.G. Roychowdhury     61 

 

 
 

Looking at the streamlines you can see how they contract after the orifice to a minimum 

value when they all become parallel, at this point, the velocity and pressure are uniform 

across the jet. This convergence is called the vena contracta. (From the Latin „contracted 

vein‟). It is necessary to know the amount of contraction to allow us to calculate the flow. 

We can predict the velocity at the orifice using the Bernoulli equation. Apply it along the 

streamline joining point 1 to the jet at its vena contracta, point 2. 
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Now z1 = z2. So, we get 
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By using continuity equation we get Q = A1u1 = A2u2 

Hence,     
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The actual area of the jet i.e. the area of the vena contracta A2 is not known whereas the area 

of the orifice opening A0 is known. Hence, it is customary to express A2 in terms of A0. We 

obtain this area by using a coefficient of contraction, Cc for the orifice which is the area of 

jet at vena contracta to area of orifice. So we get 
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So the discharge Q = A2u2 
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This is the theoretical value of discharge. Unfortunately it will be an over estimate of the real 

discharge because friction losses have not been taken into account. To incorporate friction we 

use the coefficient of velocity, Cv to correct the theoretical velocity, 
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Dimensional Analysis 

 

In engineering the application of fluid mechanics in designs make much of the use of 

empirical results from a lot of experiments. This data is often difficult to present in a readable 

form. Even from graphs it may be difficult to interpret. Dimensional analysis provides a 

strategy for choosing relevant data and how it should be presented. 

This is a useful technique in all experimentally based areas of engineering. If it is possible to 

identify the factors involved in a physical situation, dimensional analysis can form a 

relationship between them. 

The resulting expressions may not at first sight appear rigorous but these qualitative results 

converted to quantitative forms can be used to obtain any unknown factors from 

experimental analysis. 

 

Dimensions and units 

 

Any physical situation can be described by certain familiar properties e.g. length, velocity, 

area, volume, acceleration etc. These are all known as dimensions. 

Of course dimensions are of no use without a magnitude being attached. We must know more 

than that something has a length. It must also have a standardised unit - such as a meter, a 

foot, a yard etc. 

Dimensions are properties which can be measured. Units are the standard elements we use to 

quantify these dimensions. 

In dimensional analysis we are only concerned with the nature of the dimension i.e. its 

quality not its quantity. The following common abbreviation are used: 

length   = L 

mass   = M 

time   = T 

force   = F 

temperature  = 

In this module we are only concerned with L, M, T and F (not ). We can represent all the 

physical properties we are interested in with L, T and one of M or F (F can be represented by 

a combination of LTM). These notes will always use the LTM combination. 

 

The following table (taken from earlier in the course) lists dimensions of some common 

physical quantities: 
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Dimensional Homogeneity 

 

Any equation describing a physical situation will only be true if both sides have the same 

dimensions. 

That is it must be dimensionally homogenous. 

For example the equation which gives for over a rectangular weir (derived earlier in this 

module) is, 
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The SI units of the left hand side are m3s-1. The units of the right hand side must be the same. 

Writing the equation with only the SI units gives 

 
i.e. the units are consistent. 

To be more strict, it is the dimensions which must be consistent (any set of units can be used 

and simply converted using a constant). Writing the equation again in terms of dimensions, 

 
Notice how the powers of the individual dimensions are equal, (for L they are both 3, for T 

both -1). 

This property of dimensional homogeneity can be useful for: 

1.  Checking units of equations; 

2.  Converting between two sets of units; 

3.  Defining dimensionless relationships (see below). 
 

Results of dimensional analysis 

 

The result of performing dimensional analysis on a physical problem is a single equation. 

This equation relates all of the physical factors involved to one another. This is probably best 

seen in an example. 

If we want to find the force on a propeller blade we must first decide what might influence 

this force. 

It would be reasonable to assume that the force, F, depends on the following physical 

properties: 

diameter, d 

forward velocity of the propeller (velocity of the plane), u 

fluid density, 
revolutions per second, N 

fluid viscosity,  

Before we do any analysis we can write this equation: 

F = (d, u, , N, ) 
or 
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0 = (F, d, u, , N, ) 

where and 1 are unknown functions. 

These can be expanded into an infinite series which can itself be reduced to 

𝐹 = 𝐾 𝑑𝑚𝑢𝑝𝜌𝑞𝑁𝑟𝜇𝑠  

where K is some constant and m, p, q, r, s are unknown constant powers. 

From dimensional analysis we 

1. obtain these powers 

2. form the variables into several dimensionless groups 

The value of K or the functions and 1 must be determined from experiment. The 

knowledge of the dimensionless groups often helps in deciding what experimental 

measurements should be taken. 

 

Buckingham’s  theorems 

 

Although there are other methods of performing dimensional analysis, (notably the indicial 

method) the method based on the Buckingham theorems gives a good generalised strategy 

for obtaining a solution. 

This will be outlined below. 

There are two theorems accredited to Buckingham, and know as his theorems. 

 

 

 

 

 

 

 

So if a physical problem can be expressed: 

( Q1 , Q2 , Q3 ,………, Qm ) = 0 

then, according to the above theorem, this can also be expressed 

( 1 , 2 , 3 ,………, Qm-n ) = 0 

In fluids, we can normally take n = 3 (corresponding to M, L, T). 

 

 

 

 

 

 

 Choice of repeating variables 

1st theorem: 

A relationship between m variables (physical properties such as velocity, density etc.) 

can be expressed as a relationship between m-n non-dimensional groups of variables 

(called groups), where n is the number of fundamental dimensions (such as mass, 

length and time) required to express the variables. 

 

2nd theorem 

Each group is a function of n governing or repeating variables plus one of the 

remaining variables. 
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Repeating variables are those which we think will appear in all or most of the groups, and 

are a influence in the problem. Before commencing analysis of a problem one must choose 

the repeating variables. There is considerable freedom allowed in the choice. 

Some rules which should be followed are 

i. From the 2nd theorem there can be n ( = 3) repeating variables. 

ii. When combined, these repeating variables variable must contain all of dimensions (M, 

L, T) (That is not to say that each must contain M,L and T). 

iii. A combination of the repeating variables must not form a dimensionless group. 

iv. The repeating variables do not have to appear in all groups. 

v. The repeating variables should be chosen to be measurable in an experimental 

investigation. They should be of major interest to the designer. For example, pipe 

diameter (dimension L) is more useful and measurable than roughness height (also 

dimension L). 

In fluids it is usually possible to take , u and d as the three repeating variables. 

This freedom of choice results in there being many different groups which can be formed - 

and all are valid. There is not really a wrong choice. 

An example 

 

Taking the example discussed above of force F induced on a propeller blade, we have the 

equation 

0 = ( F, d, u, , N, ) 

n = 3 and m = 6 

There are m - n = 3 groups, so 

( 1 , 2 , 3 ) = 0 

The choice of , u, d as the repeating variables satisfies the criteria above. They are 

measurable, good design parameters and, in combination, contain all the dimension M, L and 

T. We can now form the three groups according to the 2nd theorem, 
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For each dimension (M, L or T) the powers must be equal on both sides of the equation, so 
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 Wrong choice of physical properties. 

 

If, when defining the problem, extra - unimportant - variables are introduced then extra 

groups will be formed. They will play very little role influencing the physical behaviour of 

the problem concerned and should be identified during experimental work. If an important / 

influential variable was missed then a group would be missing. Experimental analysis 

based on these results may miss significant behavioural changes. It is therefore, very 

important that the initial choice of variables is carried out with great care. 

 

 Manipulation of the  groups 

 

Once identified manipulation of the groups is permitted. These manipulations do not 

change the number of groups involved, but may change their appearance drastically. 

Taking the defining equation as: ( 1 , 2 , 3 ……… m-n ) = 0 

Then the following manipulations are permitted: 

i.    Any number of groups can be combined by multiplication or division to form a new 

group which replaces one of the existing. e.g. 1 and 2 may be combined to form 1a = 1 / 

2 so the defining equation becomes 



Unit - 2      Fluid  Kinematics and Dynamics 

 

 

Notes on Fluid Mechanics by Dr. D.G. Roychowdhury     71 

( 1a , 2 , 3 ……… m-n ) = 0 

ii.  The reciprocal of any dimensionless group is valid. So ( 1 ,1/ 2 , 3 ……… 1/ m-n ) = 0 

is valid. 

iii. Any dimensionless group may be raised to any power. So (( 1 )2, ( 2 )1/2, ( 3 )
3……… 

m-n ) = 0 is valid. 

iv. Any dimensionless group may be multiplied by a constant. 

v. Any group may be expressed as a function of the other groups, e.g. 

2 = ( 1 , 3 ……… m-n ) 

In general the defining equation could look like 

( 1 , 1/ 2 ,( 3 )i……… 0.5 m-n ) = 0 

 

 Common  groups 

 

During dimensional analysis several groups will appear again and again for different 

problems. These often have names. You will recognise the Reynolds number ud/ . Some 

common non-dimensional numbers (groups) are listed below. 

 

 

 

 

 

 

Examples 
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Similarity 

 

Hydraulic models may be either true or distorted models. True models reproduce features of 

the prototype but at a scale - that is they are geometrically similar. 

 
Geometric similarity 

 

Geometric similarity exists between model and prototype if the ratio of all corresponding 

dimensions in the model and prototype are equal. 

 

All corresponding angles are the same. 

 

Kinematic similarity 

 

Kinematic similarity is the similarity of time as well as geometry. It exists between model 

and prototype 

i. If the paths of moving particles are geometrically similar 

ii. If the rations of the velocities of particles are similar 
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This has the consequence that streamline patterns are the same. 

 

Dynamic similarity 

 
Dynamic similarity exists between geometrically and kinematically similar systems if the 

ratios of all forces in the model and prototype are the same. 

 

This occurs when the controlling dimensionless group on the right hand side of the defining 

equation is the same for model and prototype. 

 

 Models 

 

When a hydraulic structure is build it undergoes some analysis in the design stage. Often the 

structures are too complex for simple mathematical analysis and a hydraulic model is build. 

Usually the model is less than full size but it may be greater. The real structure is known as 

the prototype. The model is usually built to an exact geometric scale of the prototype but in 

some cases - notably river model - this is not possible. Measurements can be taken from the 

model and a suitable scaling law applied to predict the values in the prototype. 

To illustrate how these scaling laws can be obtained we will use the relationship for 

resistance of a body moving through a fluid. 
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We can write 
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So the force on the prototype can be predicted from measurement of the force on the model. 

But only if the fluid in the model is moving with same Reynolds number as it would in the 

prototype. That is to say the Rp can be predicted by 

 

In this case the model and prototype are dynamically similar. 

Formally this occurs when the controlling dimensionless group on the right hand side of the 

defining equation is the same for model and prototype. In this case the controlling 

dimensionless group is the Reynolds number. 
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Dynamically similar model examples 

 

Example 1 

 

An underwater missile, diameter 2m and length 10m is tested in a water tunnel to determine 

the forces acting on the real prototype. A 1/20th scale model is to be used. If the maximum 

allowable speed of the prototype missile is 10 m/s, what should be the speed of the water in 

the tunnel to achieve dynamic similarity? 

 

Example 2 

 

A model aeroplane is built at 1/10 scale and is to be tested in a wind tunnel operating at a 

pressure of 20 times atmospheric. The aeroplane will fly at 500km/h. At what speed should 

the wind tunnel operate to give dynamic similarity between the model and prototype? If the 

drag measure on the model is 337.5 N what will be the drag on the plane? 
 

From earlier we derived the equation for resistance on a body moving through air: 

 

For dynamic similarity Rem = Rep, so 

 

The value of does not change much with pressure so m = p 
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The equation of state for an ideal gas is p = RT . As temperature is the same then the 

density of the air in the model can be obtained from 

 


